Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (3): 555-563.doi: 10.21629/JSEE.2019.03.13
• Systems Engineering • Previous Articles Next Articles
Ke FANG*(), Kaibin ZHAO(), Yuchen ZHOU()
Received:
2017-12-27
Online:
2019-06-01
Published:
2019-07-04
Contact:
Ke FANG
E-mail:hitsim@163.com;kaibin.zhao.HIT@hotmail.com;zhouyuchen-01@163.com
About author:
FANG Ke was born in 1977. He is a Ph.D. and an associate professor in Harbin Institute of Technology. He was at Arizona State University as a visiting scholar from 2014 to 2015. His research interests are simulation systems, verification, validation & accreditation, and model validation. E-mail:Supported by:
Ke FANG, Kaibin ZHAO, Yuchen ZHOU. Validation method for simulation models with cross iteration[J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 555-563.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Physical meaning of the variants"
Variant | Meaning |
Position | |
Trajectory deflection angle | |
Dynamic pressure | |
Radius | |
Earth gravitational constant | |
Wind direction | |
Rudder angle | |
Attitude angles | |
Mass | |
Sectional area | |
Launch direction | |
Earth equator radius | |
Rotational angular velocity | |
Moment | |
coefficient | |
of inertia | |
Velocity | |
Gravity acceleration | |
Thrust | |
Launch spot latitude | |
Mach | |
Rotary inertia | |
Trajectory tilt angle | |
Aerodynamic coefficient | |
Velocity transformation angle | |
Gravitational potential coefficient | |
Wind velocity | |
Rotating moment |
Table 2
Simulation data and observed data of the flight vehicle's position"
Time/s | Sim | Obs | Sim | Obs | Sim | Obs |
0.100 | 150.757 | 150.755 | 20 799.960 | 20 799.960 | 0 | 0 |
0.200 | 294.326 | 294.315 | 20 799.850 | 20 799.850 | 0 | 0 |
25.100 | 34 685.460 | 34 323.240 | 16 460.620 | 16 592.120 | 118.865 | 114.550 |
25.200 | 34 814.140 | 34 448.610 | 16 422.750 | 16 555.970 | 119.754 | 115.399 |
49.800 | 62 228.430 | 60 814.420 | 1 368.693 | 2 639.631 | 403.060 | 392.137 |
49.900 | 62 315.850 | 60 897.090 | 1 287.806 | 2 567.734 | 403.434 | 392.968 |
50.000 | 62 402.990 | 60 979.460 | 1 206.855 | 2 495.826 | 403.761 | 393.779 |
Table 3
Simulation data and observed data of the flight vehicle's attitude angles"
Time/s | Simulation data | Observed data | Simulation data | Observed data | Simulation data | Observed data |
1.000 | -3.125 | -3.125 | -0.363 | -0.363 | -6.201 | -6.207 |
2.000 | -5.449 | -5.439 | -0.567 | -0.567 | -5.072 | -5.087 |
26.000 | -20.101 | -19.837 | -0.455 | -0.463 | -1.568 | -1.598 |
27.000 | -20.536 | -20.255 | -0.46 | -0.468 | -1.543 | -1.574 |
49.000 | -34.601 | -33.213 | -0.009 | -0.256 | 6.753 | 3.475 |
50.000 | -35.459 | -33.999 | 0.271 | -0.127 | 10.814 | 5.431 |
Table 5
Simulation data and observed data of the rudder angles $\mathit{\boldsymbol{\delta _\varphi , \delta _\psi , \delta _\gamma}}$"
Time/s | Simulation data | Observed data | Simulation data | Observed data | Simulation data | Observed data |
1.000 | -0.22 | -0.216 | 1.824 | 1.823 | -0.007 | 0.001 |
2.000 | 0.039 | 0.042 | 5.306 | 5.298 | -0.017 | -0.018 |
26.000 | -0.169 | -0.147 | 8.064 | 8.461 | -0.046 | -0.042 |
27.000 | -0.15 | -0.13 | 7.561 | 7.966 | -0.041 | -0.038 |
49.000 | -0.011 | -0.008 | 1.345 | 1.835 | -0.012 | -0.01 |
50.000 | -0.014 | -0.008 | 1.438 | 1.937 | -0.017 | -0.012 |
1 | SARGENT R G. Verification and validation of simulation models. Journal of Simulation, 2013, 71 (1): 12- 24. |
2 | SARGENT R G, GOLDSMAN D M, YAACOUB T. Use of the interval statistical procedure for simulation model validation. Proc. of the Winter Simulation Conference, 2015, 60- 72. |
3 | GOLDSMAN D, TOKOL G. Output analysis procedures for computer simulations. Proc. of the Winter Simulation Conference, 2000, 39- 45. |
4 | FANG K, ZHOU Y, ZHAO E. Discussion on the factor space of simulation model validation. Systems Engineering and Electronics, 2017, 39 (11): 2592- 2602. |
5 | SANKARARAMAN S, MAHADEVAN S. Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems. Reliability Engineering and System Safety, 2015, 138 (1): 194- 209. |
6 | SARGENT R G, GOLDSMAN D M, YAACOUB T. A tutorial on the operational validation of simulation models. Proc. of the Winter Simulation Conference, 2016, 163- 177. |
7 | MEHTA U, ROMERO V, EKLUND D, et al. The JANNAF simulation credibility guide on verification, uncertainty propagation and quantification, and validation. Proc. of the 53rd AIAA Aerospace Sciences Meeting, 2015, 1- 30. |
8 | CHANG K H, CHANG Y C, CHUNG H Y. A novel AHPbased benefit evaluation model of military simulation training systems. Mathematical Problems in Engineering, 2015, 1- 14. |
9 |
YAGER R R. Multi-criteria decision making with interval criteria satisfactions using the golden rule representative value. IEEE Trans. on Fuzzy Systems, 2018, 26 (2): 1023- 1031.
doi: 10.1109/TFUZZ.2017.2709275 |
10 |
KHELIFI L, MIGNOTTE M. A multi-objective decision making approach for solving the image segmentation fusion problem. IEEE Trans. on Image Processing, 2017, 26 (8): 3831- 3845.
doi: 10.1109/TIP.2017.2699481 |
11 |
ALMULLA M, YAHYAOUI H, AL-MATORI K. A new fuzzy hybrid technique for ranking real world web services. Knowledge-Based Systems, 2015, 77, 1- 15.
doi: 10.1016/j.knosys.2014.12.021 |
12 | FANG K, YANG M, ZHOU Y. A novel method to build a factor space for model validation. Proc. of the Asian Simulation Conference, 2018, 3- 17. |
13 |
DOROBANTU A, BALAS G J, GEORGIOU T T. Validating aircraft models in the gap metric. Journal of Aircraft, 2014, 51 (6): 1665- 1672.
doi: 10.2514/1.C032580 |
14 | NING X, WU Y, YU T, et al. Research on comprehensive validation of simulation models based on improved grey relational analysis. Acta Armamentarii, 2016, 37 (2): 338- 347. |
15 | LEHMANN A, WANG Z. Efficient use of V & V techniques for quality and credibility assurance of complex modeling and simulation (M & S) applications. International Journal of Industrial Engineering:Theory Applications and Practice, 2017, 24 (2): 220- 228. |
16 |
HAKHAMANESHI M, KUTTER B L, MOORE M, et al. Validation of ASCE 41-13 modeling parameters and acceptance criteria for rocking shallow foundations. Earthquake Spectra, 2016, 32 (2): 1121- 1140.
doi: 10.1193/121914EQS216M |
17 |
ZHOU Y, FANG K, MA P, et al. Simulation credibility evaluation based on multi-source data fusion. Proc. of the Asian Simulation Conference, 2018, 18- 31.
doi: 10.1007/978-981-13-2853-4_2 |
18 | LIU Y, CHEN W, ARENDT P, et al. Toward a better understanding of model validation metrics. Journal of Mechanical Design, 2011, 133 (7): 1- 13. |
19 |
ATKINSON A D, HILL R R, PIGNATIELLO J J, et al. Wavelet ANOVA approach to model validation. Simulation Modelling Practice and Theory, 2017, 78, 18- 27.
doi: 10.1016/j.simpat.2017.08.004 |
20 |
SUN Y, JEFFREY D H, MARC G G. Nonparametric inference for periodic sequences. Techno-metrics, 2012, 54 (1): 83- 96.
doi: 10.1080/00401706.2012.650499 |
21 |
AU S K. Model validity and frequency band selection in operational modal analysis. Mechanical Systems and Signal Processing, 2016, 81, 339- 359.
doi: 10.1016/j.ymssp.2016.03.025 |
22 | ZHANG Z, FANG K, WU F, et al. Detection method for credibility defect of simulation based on Sobol' method and orthogonal design. Proc. of the Asia Simulation Conference, 2013, 421- 428. |
23 | SARIN H, KOKKOLARAS M, HULBERT G, et al. Comparing time histories for validation of simulation models:error measures and metrics. Journal of Dynamic Systems, Measurement, and Control, 2010, 132 (6): 768- 778. |
24 |
CROCHEMORE L, PERRIN C, ANDREASSIAN V, et al. Comparing expert judgement and numerical criteria for hydrograph evaluation. Hydrological Sciences Journal, 2015, 60 (3): 402- 423.
doi: 10.1080/02626667.2014.903331 |
25 | HAUDUC H, NEUMANN M B, MUSCHALLA D, et al. Efficiency criteria for environmental model quality assessment:a review and its application to wastewater treatment. Environmental Modeling & Software, 2015, 68, 196- 204. |
26 |
AO D, HU Z, MAHADEVAN S. Design of validation experiments for life prediction models. Reliability Engineering and System Safety, 2017, 165, 22- 33.
doi: 10.1016/j.ress.2017.03.030 |
27 |
SHIN J, YOO J, PARK P. Adaptive regularisation for normalised subband adaptive filter:mean-square performance analysis approach. IET Signal Processing, 2018, 12 (9): 1146- 1153.
doi: 10.1049/iet-spr.2018.5165 |
28 |
ROY K, DAS R N, AMBURE P, et al. Be aware of error measures. Further studies on validation of predictive QSAR models. Chemo-metrics and Intelligent Laboratory Systems, 2016, 152, 18- 33.
doi: 10.1016/j.chemolab.2016.01.008 |
29 |
DABBI E P, HAIGH I D, LAMBKIN D, et al. Beyond significant wave height:a new approach for validating spectral wave models. Coastal Engineering, 2015, 100, 11- 25.
doi: 10.1016/j.coastaleng.2015.03.007 |
30 |
NOTTON G, PAOLI C, IVANOVA L, et al. Neural network approach to estimate 10-min solar global irradiation values on tilted planes. Renewable Energy, 2013, 50, 576- 584.
doi: 10.1016/j.renene.2012.07.035 |
31 |
PARISI A V, DOWNS N, TURNER J, et al. Comparison of gome-2 UVA satellite data to ground-based spectroradiometer measurements at a subtropical site. IEEE Trans. on Geoscience and Remote Sensing, 2017, 55 (6): 3145- 3149.
doi: 10.1109/TGRS.2017.2662714 |
32 |
MERLA C, PAFFI A, APOLLONIO F, et al. Portable system for practical permittivity measurements improved by homomorphic deconvolution. IEEE Trans. on Instrumentation and Measurement, 2017, 66 (3): 514- 521.
doi: 10.1109/TIM.2016.2644859 |
[1] | Yonglin Lei, Ning Zhu, Jian Yao, Hessam Sarjoughian, and Weiping Wang. Model architecture-oriented combat system effectiveness simulation based on MDE [J]. Systems Engineering and Electronics, 2017, 28(5): 900-922. |
[2] |
Liu Chen.
Research on system-of-systems combat simulation model formal specification and representation
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||