Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (3): 525-534.doi: 10.21629/JSEE.2019.03.10
• Systems Engineering • Previous Articles Next Articles
Jinfu FENG(), Qiang ZHANG*(), Junhua HU(), An LIU()
Received:
2018-07-23
Online:
2019-06-01
Published:
2019-07-04
Contact:
Qiang ZHANG
E-mail:wcsfjf@163.com;zjslwdyx@163.com;hjh_air@163.com;frederick111@yeah.net
About author:
FENG Jinfu was born in 1964. He is a professor in Air Force Engineering University. He received his Ph.D. degree from Nanjing University of Science and Technology in 1996. His research interests are intelligent decision-making of air combat, airborne stores management system, and design of cross-medium weapons. E-mail:Supported by:
Jinfu FENG, Qiang ZHANG, Junhua HU, An LIU. Dynamic assessment method of air target threat based on improved GIFSS[J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 525-534.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Calculation method of membership degree of each index"
Index | Calculation method of membership degree |
Target type | Missile 0.9; Battleplane 0.7; Bomber 0.5; Armed helicopter 0.3; Early warning aircraft 0.1 |
Jamming ability | Strongest 0.9; Strong 0.7; Average 0.5; Weak 0.3; Weakest 0.1 |
Target height | |
Target distance | |
Route shortcut | |
Target velocity | |
Maneuvering ability | Strongest 0.9; Strong 0.7; Average 0.5; Weak 0.3; Weakest 0.1 |
Table 2
Parameters of the air target index at different time"
Time | Target | Type | Jamming ability | Height | Distance/km | Route shortcut/km | Velocity/(m/s) | Maneuvering ability |
Missile | Weakest | 1 000 | 80 | 7 | 480 | Strongest | ||
Battleplane | Strong | 2 200 | 210 | 12 | 290 | Strong | ||
Bomber | Average | 3 600 | 230 | 13 | 250 | Average | ||
Early warning aircraft | Strongest | 8 000 | 85 | 8 | 150 | Weak | ||
Armed helicopter | Average | 1 100 | 65 | 5 | 100 | Strong | ||
Missile | Weakest | 800 | 70 | 6 | 500 | Strongest | ||
Battleplane | Strong | 1 900 | 260 | 15 | 310 | Strong | ||
Bomber | Average | 3 400 | 180 | 11 | 300 | Average | ||
Early warning aircraft | Strongest | 6 500 | 100 | 9 | 195 | Weak | ||
Armed helicopter | Weak | 1 000 | 55 | 4 | 115 | Strongest | ||
Missile | Weakest | 650 | 60 | 5 | 515 | Strongest | ||
Battleplane | Strongest | 1 600 | 285 | 16 | 320 | Average | ||
Bomber | Average | 3 000 | 140 | 10 | 310 | Average | ||
Early warning aircraft | Strong | 3 673 | 117 | 9 | 185 | Weak | ||
Armed helicopter | Weak | 609 | 42 | 4 | 130 | Strong |
Table 3
IFS matrix of the air target threat at different time"
Time | Target | |||||||
(0.9, 0.05, 0.05) | (0.1, 0.45, 0.45) | (1, 0, 0) | (0.909, 0.045, 0.125) | (0.750, 0.125, 0.125) | (1, 0, 0) | (0.9, 0.05, 0.05) | ||
(0.7, 0.15, 0.15) | (0.7, 0.15, 0.15) | (0.829, 0.086, 0.086) | (0.122, 0.439, 0.439) | (0.125, 0.438, 0.438) | (0.737, 0.132, 0.132) | (0.7, 0.15, 0.15) | ||
(0.5, 0.25, 0.25) | (0.5, 0.25, 0.25) | (0.629, 0.186, 0.186) | (0, 0.500, 0.500) | (0, 0.500, 0.50) | (0.395, 0.303, 0.303) | (0.5, 0.25, 0.25) | ||
(0.1, 0.45, 0.45) | (0.9, 0.05, 0.05) | (0, 0.500, 0.500) | (0.879, 0.061, 0.061) | (0.625, 0.188, 0.188) | (0.132, 0.434, 0.434) | (0.3, 0.35, 0.35) | ||
(0.3, 0.35, 0.35) | (0.5, 0.25, 0.25) | (0.986, 0.007, 0.007) | (1, 0, 0) | (1, 0, 0) | (0, 0.500, 0.500) | (0.7, 0.15, 0.15) | ||
(0.9, 0.05, 0.05) | (0.1, 0.45, 0.45) | (1, 0, 0) | (0.927, 0.027, 0.046) | (0.818, 0.065, 0.117) | (1, 0, 0) | (0.9, 0.05, 0.05) | ||
(0.7, 0.15, 0.15) | (0.7, 0.15, 0.15) | (0.807, 0.070, 0.123) | (0, 0.738, 0.262) | (0, 0.750, 0.250) | (0.507, 0.213, 0.281) | (0.7, 0.15, 0.150 | ||
(0.5, 0.25, 0.25) | (0.5, 0.25, 0.25) | (0.544, 0.203, 0.253) | (0.390, 0.172, 0.438) | (0.364, 0.220, 0.416) | (0.481, 0.156, 0.364) | (0.5, 0.25, 0.25) | ||
(0.1, 0.45, 0.45) | (0.9, 0.05, 0.05) | (0, 0.313, 0.688) | (0.780, 0.149, 0.071) | (0.546, 0.284, 0.170) | (0.208, 0.158, 0.634) | (0.3, 0.35, 0.35) | ||
(0.3, 0.35, 0.35) | (0.3, 0.63, 0.07) | (0.965, 0.014, 0.021) | (1, 0, 0) | (1, 0, 0) | (0, 0.350, 0.650) | (0.7, 0.15, 0.15) | ||
(0.9, 0.05, 0.05) | (0.1, 0.45, 0.45) | (0.987, 0.004, 0.009) | (0.926, 0.027, 0.048) | (0.917, 0.028, 0.056) | (1, 0, 0) | (0.9, 0.05, 0.05) | ||
(0.7, 0.15, 0.15) | (0.9, 0.02, 0.08) | (0.677, 0.111, 0.213) | (0, 0.596, 0.404) | (0, 0.567, 0.433) | (0.494, 0.237, 0.270) | (0.5, 0.39, 0.11) | ||
(0.5, 0.25, 0.25) | (0.5, 0.25, 0.25) | (0.220, 0.298, 0.482) | (0.597, 0.112, 0.291) | (0.500, 0.205, 0.296) | (0.468, 0.249, 0.284) | (0.5, 0.25, 0.25) | ||
(0.1, 0.45, 0.45) | (0.7, 0.22, 0.08) | (0, 0.065, 0.935) | (0.691, 0.207, 0.102) | (0.583, 0.208, 0.208) | (0.143, 0.473, 0.385) | (0.30.35, 0.35) | ||
(0.3, 0.35, 0.35) | (0.3, 0.35, 0.35) | (1, 0, 0) | (1, 0, 0) | (1, 0, 0) | (0, 0.370, 0.630) | (0.7, 0.15, 0.15) |
Table 4
Generalized parameter matrix at different time"
Target | | ||
(0.9, 0.07, 0.03) | (0.9, 0.05, 0.05) | (0.9, 0.01, 0.09) | |
(0.8, 0.12, 0.08) | (0.8, 0.16, 0.04) | (0.8, 0.05, 0.15) | |
(0.7, 0.10, 0.20) | (0.7, 0.13, 0.17) | (0.9, 0.04, 0.06) | |
(0.8, 0.04, 0.16) | (0.7, 0.12, 0.18) | (0.6, 0.25, 0.15) | |
(0.7, 0.21, 0.09) | (0.6, 0.32, 0.08) | (0.8, 0.15, 0.05) |
Table 5
Time-weighted IFS matrix of air target threat"
Time | Target | |||||||
(0.9, 0.05, 0.05) | (0.10, 0.45, 0.45) | (1, 0, 0) | (0.923, 0.030, 0.047) | (0.872, 0.047, 0.081) | (1, 0, 0) | (0.9, 0.05, 0.05) | ||
(0.7, 0.15, 0.15) | (0.83, 0.05, 0.12) | (0.752, 0.093, 0.155) | (0.026, 0.594, 0.380) | (0.026, 0.580, 0.394) | (0.559, 0.205, 0.236) | (0.6, 0.25, 0.14) | ||
(0.5, 0.25, 0.25) | (0.50, 0.25, 0.25) | (0.417, 0.245, 0.338) | (0.460, 0.170, 0.370) | (0.387, 0.250, 0.363) | (0.457, 0.228, 0.315) | (0.5, 0.25, 0.25) | ||
(0.1, 0.45, 0.45) | (0.82, 0.11, 0.07) | (0, 0.149, 0.851) | (0.766, 0.148, 0.056) | (0.582, 0.222, 0.196) | (0.159, 0.347, 0.494) | (0.3, 0.35, 0.35) | ||
(0.3, 0.35, 0.35) | (0.35, 0.38, 0.27) | (1, 0, 0) | (1, 0, 0) | (1, 0, 0) | (0, 0.387, 0.613) | (0.7, 0.15, 0.15) |
1 |
KONG D P, CHANG T Q, WANG Q D, et al. A threat assessment method of group targets based on interval-valued intuitionistic fuzzy multi-attribute group decision-making. Applied Soft Computing, 2018, 67, 350- 369.
doi: 10.1016/j.asoc.2018.03.015 |
2 |
ZHANG K, KONG W R, LIU P P, et al. Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR. Journal of Systems Engineering and Electronics, 2018, 29 (2): 305- 310.
doi: 10.21629/JSEE.2018.02.11 |
3 | TANG X, YANG J J, FENG S, et al. AR(p) dynamic catastrophe ranking method of target threat assessment under the loss of data. Systems Engineering and Electronics, 2017, 39 (5): 1058- 1064. |
4 | LIU Y E, CHEN S D, ZHAO Z Y, et al. Threat assessment of manned/unmanned combat aerial vehicle formation air-toground attack based on FBNs. Systems Engineering and Electronics, 2012, 34 (8): 1635- 1639. |
5 | WANG Y, SUN Y, LI J Y, et al. Air defense threat assessment based on dynamic Bayesian network. Proc. of the IEEE International Conference on Systems and Informatics, 2012, 721- 724. |
6 | LIU H B, WANG H P, SHEN L D. Target threat assessment using SAPSO and grey neural network. Journal of Northwestern Polytechnical University, 2016, 34 (1): 25- 32. |
7 | XIE L L, HAN L. Threat ordering of the air-raid targets threat based on the rough set theory. Fire Control & Command Control, 2009, 34 (9): 61- 64. |
8 | WU H, SU X Q. Threat assessment of aerial targets based on group generalized intuitionistic fuzzy soft sets. Control and Decision, 2015, 30 (8): 1462- 1468. |
9 |
XU Y J, WANG Y C, MIU X D. Multi-attribute decision making method for air target threat evaluation based on intuitionistic fuzzy sets. Journal of Systems Engineering and Electronics, 2012, 23 (6): 891- 897.
doi: 10.1109/JSEE.2012.00109 |
10 | SHEN M X, XU J, WANG S. Grey cluster decision making way for the threat ordering of aerial targets. Systems Engineering and Electronics, 2008, 30 (9): 1721- 1723. |
11 |
MA S D, ZHANG H Z, YANG G Q. Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation. Aerospace Science and Technology, 2017, 67, 49- 53.
doi: 10.1016/j.ast.2017.03.033 |
12 |
LEE H, CHOI B J, KIM CO, et al. Threat evaluation of enemy air fighters via neural network-based Markov chain modeling. Knowledge-based Systems, 2017, 116, 49- 57.
doi: 10.1016/j.knosys.2016.10.032 |
13 |
LEI Y J, WANG B S, WANG Y. Techniques for threat assessment based on intuitionistic fuzzy reasoning. Electronics & Information Technology, 2007, 29 (9): 2077- 2081.
doi: 10.1016/S1005-8885(07)60159-9 |
14 | WANG Y, MIAO X. Intuitionistic fuzzy perceiving methods for situation and threat assessment. Proc. of the IEEE International Conference on Fuzzy Systems and Knowledge Discovery, 2012, 578- 582. |
15 | MOLODTSOV D. Soft set theory-first results. Computers & Mathematics with Applications, 1999, 37 (4): 19- 31. |
16 | MAJI P. An application of intuitionistic fuzzy soft sets in a decision making problem. Proc. of the IEEE International Conference on Progress in Informatics and Computing, 2010, 349- 351. |
17 |
MAJUMDAR P, SAMANTA S K. Similarity measure of soft sets. New Mathematics and Natural Computation, 2008, 4 (1): 1- 12.
doi: 10.1142/S1793005708000908 |
18 | LI M Y, FAN Z P, YOU T H. Method for ranking alternatives considering multi-person decision making and different index sets. Control and Decision, 2013, 28 (6): 849- 854. |
19 | MAJI P K, BISWAS R, ROY A R. Intuitionistic fuzzy soft sets. Journal of Fuzzy Mathematics, 2001, 9 (3): 677- 692. |
20 | MAJI P K, ROY A R, BISWAS R. On intuitionistic fuzzy soft sets. Journal of Fuzzy Mathematics, 2004, 12 (3): 669- 684. |
21 | CHAIRA T, RAY A K. A new measure using intuitionistic fuzzy set theory and its application to edge detection. Applied Soft Computing Journal, 2008, 8 (2): 919- 927. |
22 |
ZHAO H Y, MA W M, SUN B Z. A novel decision making approach based on intuitionistic fuzzy soft sets. International Journal of Machine Learning and Cybernetics, 2017, 8 (4): 1107- 1117.
doi: 10.1007/s13042-015-0481-z |
23 | AZADEH Z K, ADEM K, ABDUL R S. Application of a preference relationship in decision-making based on intuitionistic fuzzy soft sets. Journal of Intelligent & Fuzzy Systems, 2018, 34 (1): 123- 139. |
24 |
AGARWAL M, BISWAS K K, HANMANDLU M. Generalized intuitionistic fuzzy soft sets with applications in decisionmaking. Applied Soft Computing, 2013, 13 (8): 3552- 3566.
doi: 10.1016/j.asoc.2013.03.015 |
25 | AGARWAL M, HANMANDLU M, BISWAS K K. Generalized intuitionistic fuzzy soft set and its application in practical medical diagnosis problem. Proc. of the IEEE International Conference on Fuzzy Systems, 2011, 2972- 2978. |
26 |
KHIZAR H, MUHAMMAD I A, JOSÉ C R, et al. Best concept selection in design process:an application of generalized intuitionistic fuzzy soft sets. Journal of Intelligent & Fuzzy Systems, 2018, 35 (5): 1- 14.
doi: 10.3233/JIFS-172121 |
27 |
JIN H P, YOUNG C K, MI J S. A generalized intuitionistic fuzzy soft set theoretic approach to decision making problems. International Journal of Fuzzy Logic and Intelligent Systems, 2011, 11 (2): 71- 76.
doi: 10.5391/IJFIS.2011.11.2.071 |
28 | GUO H, XU H J, LIU L. Threat assessment for air combat target based on interval TOPSIS. Systems Engineering and Electronics, 2009, 31 (12): 2914- 2917. |
29 |
ATANASSOV K T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986, 20 (1): 87- 96.
doi: 10.1016/S0165-0114(86)80034-3 |
30 |
XU Z. Intuitionistic preference relations and their application in group decision making. Information Sciences, 2007, 177 (11): 2363- 2379.
doi: 10.1016/j.ins.2006.12.019 |
31 |
XU Z, YAGER R R. Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems, 2006, 35 (4): 417- 433.
doi: 10.1080/03081070600574353 |
32 |
XU Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. on Fuzzy Systems, 2007, 15 (6): 1179- 1187.
doi: 10.1109/TFUZZ.2006.890678 |
33 |
MAJI P K, BISWAS R, ROY A R. Soft set theory. Mathematics with Applications, 2003, 45, 555- 562.
doi: 10.1016/S0898-1221(03)00016-6 |
34 | GAO M M, SUN T, ZHU J J. Revised axiomatic definition and structural formula of intuitionistic fuzzy entropy. Control and Decision, 2014, 29 (3): 470- 474. |
35 | RAO C J, ZHAO Y. Multi-attribute decision making model based on optimal membership and relative entropy. Journal of Systems Engineering and Electronics, 2009, 20 (3): 537- 542. |
[1] | Kun ZHANG, Weiren KONG, Peipei LIU, Jiao SHI, Yu LEI, Jie ZOU. Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 305-310. |
[2] | Bin Chen, Zhixue Wang, and Chen Luo. Integrated evaluation approach for node importance of complex networks based on relative entropy [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1219-1226. |
[3] | Zhensong Chen, Shenghua Xiong, Yanlai Li, and Kwai-Sang Chin. Entropy measures of type-2 intuitionistic fuzzy sets and type-2 triangular intuitionistic trapezodial fuzzy sets [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 774-. |
[4] | Rao Congjun & Zhao Yong. Multi-attribute decision making model based on optimal membership and relative entropy [J]. Journal of Systems Engineering and Electronics, 2009, 20(3): 537-542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||