Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (3): 511-524.doi: 10.21629/JSEE.2019.03.09
• Systems Engineering • Previous Articles Next Articles
Xiaoguang GAO*(), Yu YANG(), Zhigao GUO()
Received:
2018-10-25
Online:
2019-06-01
Published:
2019-07-04
Contact:
Xiaoguang GAO
E-mail:cxg2012@nwpu.edu.cn;youngiv@126.com;buckleyguo@mail.nwpu.edu.cn
About author:
GAO Xiaoguang was born in 1957. She received her Ph.D. degree from the Northwestern Polytechnical University, Xi'an, China in 1989. She is currently a professor in the Department of System Engineering, Northwestern Polytechnical University. She now is the deputy director of Automatic Control Specialized Committee of China Ordnance Industry Association, specialized committee member of China Aviation Society of Weapon System, specialized committee member of Photoelectric Technology of China Astronautical Society. Her research interests include probabilistic graphical models, deep learning, reinforcement learning, advanced control theory and its application in complex systems, attack defense confrontation and effectiveness evaluation of integrated avionics systems, and aviation fire control and operational effectiveness analysis. E-mail:Supported by:
Xiaoguang GAO, Yu YANG, Zhigao GUO. Learning Bayesian networks by constrained Bayesian estimation[J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 511-524.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Information on standard BNs"
BN | Node | Arc | Parameter | Constraint |
Andes | 223 | 338 | 1 157 | 935 |
Win95pts | 76 | 112 | 574 | 222 |
Hepar2 | 70 | 123 | 1 453 | 398 |
Hailfinder | 56 | 66 | 2 656 | 437 |
Alarm | 37 | 46 | 509 | 194 |
Insurance | 27 | 52 | 984 | 333 |
Boerlage92 | 23 | 36 | 86 | 143 |
Sachs | 11 | 17 | 178 | 95 |
Asia | 8 | 8 | 18 | 18 |
Survey | 6 | 6 | 21 | 20 |
Cancer | 5 | 4 | 10 | 12 |
Earthquake | 5 | 4 | 10 | 10 |
Weather | 4 | 4 | 9 | 9 |
Table 3
Average learning results on standard BNs"
BN | Data | ML | CML | MAP | CBE |
Andes | 20** | 1.273 (0.059) | 0.826 (0.039) | 0.238 (0.007) | 0.066 (0.001) |
100** | 0.841 (0.074) | 0.626 (0.039) | 0.149 (0.009) | 0.049 (0.001) | |
500** | 0.454 (0.026) | 0.353 (0.020) | 0.078 (0.003) | 0.024 (0.001) | |
Win95pts | 20* | 0.452 (0.090) | 0.320 (0.074) | 0.244 (0.007) | 0.141 (0.001) |
100* | 0.595 (0.049) | 0.485 (0.041) | 0.219 (0.010) | 0.133 (0.001) | |
500* | 0.718 (0.081) | 0.643 (0.073) | 0.208 (0.013) | 0.120 (0.001) | |
Hepar2 | 20* | 0.608 (0.096) | 0.469 (0.075) | 0.176 (0.010) | 0.128 (0.001) |
100* | 0.699 (0.062) | 0.569 (0.056) | 0.183 (0.009) | 0.124 (0.006) | |
500* | 0.801 (0.078) | 0.652 (0.062) | 0.197 (0.011) | 0.116 (0.004) | |
Hailfinder | 20** | 0.968 (0.075) | 0.814 (0.061) | 0.224 (0.006) | 0.112 (0.001) |
100** | 1.095 (0.051) | 0.993 (0.053) | 0.267 (0.011) | 0.093 (0.001) | |
500*** | 1.142 (0.037) | 1.089 (0.034) | 0.296 (0.009) | 0.065 (0.001) | |
Alarm | 20*** | 0.560 (0.061) | 0.297 (0.044) | 0.264 (0.016) | 0.057 (0.002) |
100** | 0.448 (0.067) | 0.283 (0.052) | 0.180 (0.015) | 0.046 (0.002) | |
500** | 0.375 (0.051) | 0.267 (0.041) | 0.118 (0.011) | 0.033 (0.002) | |
Insurance | 20* | 0.735 (0.086) | 0.527 (0.062) | 0.264 (0.009) | 0.135 (0.003) |
100* | 0.567 (0.066) | 0.443 (0.054) | 0.171 (0.009) | 0.108 (0.002) | |
500 | 0.357 (0.050) | 0.285 (0.032) | 0.096 (0.006) | 0.075 (0.002) | |
Boerlage92 | 20*** | 1.908 (0.322) | 1.192 (0.200) | 0.196 (0.031) | 0.020 (0.003) |
100*** | 0.828 (0.201) | 0.560 (0.085) | 0.105 (0.020) | 0.016 (0.003) | |
500*** | 0.260 (0.124) | 0.186 (0.079) | 0.035 (0.014) | 0.008 (0.002) | |
Sachs | 20** | 1.143 (0.196) | 0.775 (0.156) | 0.249 (0.019) | 0.090 (0.004) |
100** | 0.675 (0.123) | 0.465 (0.074) | 0.158 (0.014) | 0.063 (0.003) | |
500** | 0.384 (0.081) | 0.283 (0.056) | 0.085 (0.008) | 0.038 (0.002) | |
Asia | 20*** | 0.647 (0.348) | 0.349 (0.218) | 0.168 (0.038) | 0.023 (0.003) |
100*** | 0.343 (0.180) | 0.266 (0.171) | 0.088 (0.029) | 0.015 (0.002) | |
500** | 0.147 (0.119) | 0.123 (0.111) | 0.035 (0.023) | 0.012 (0.003) | |
Survey | 20*** | 1.410 (0.550) | 0.893 (0.366) | 0.141 (0.058) | 0.023 (0.007) |
100*** | 0.724 (0.382) | 0.340 (0.190) | 0.066 (0.028) | 0.015 (0.004) | |
500** | 0.141 (0.193) | 0.052 (0.044) | 0.030 (0.026) | 0.012 (0.005) | |
Cancer | 20*** | 0.368 (0.309) | 0.290 (0.283) | 0.088 (0.034) | 0.015 (0.004) |
100*** | 0.864 (0.866) | 0.358 (0.305) | 0.058 (0.045) | 0.007 (0.002) | |
500*** | 0.131 (0.161) | 0.115 (0.155) | 0.021 (0.012) | 0.004 (0.003) | |
Earthquake | 20*** | 0.618 (0.515) | 0.320 (0.267) | 0.162 (0.012) | 0.011 (0.001) |
100*** | 1.491 (0.765) | 0.687 (0.328) | 0.142 (0.061) | 0.001 (0.001) | |
500*** | 0.414 (0.492) | 0.271 (0.172) | 0.073 (0.041) | 0.006 (0.004) | |
Weather | 20** | 0.438 (0.283) | 0.401 (0.267) | 0.056 (0.026) | 0.020 (0.005) |
100 | 0.036 (0.049) | 0.031 (0.048) | 0.012 (0.010) | 0.011 (0.003) | |
500 | 0.014 (0.009) | 0.013 (0.009) | 0.002 (0.001) | 0.003 (0.001) |
Table 4
Constraints for the Wine model"
Node | Constraints | ||
A | a = 1 | a = 2 | a = 3 |
B | p(b = 1) | p(b = 3) | p(b = 1) |
< p(b = 2) | < p(b = 2) | < p(b = 3) | |
< p(b = 3) | < p(b = 1) | < p(b = 2) | |
C | p(c = 3) | p(c = 3) | p(c = 1) |
< p(c = 2) | < p(c = 2) | < p(c = 3) | |
< p(c = 1) | < p(c = 1) | < p(c = 2) | |
D | p(d = 1) | p(d = 3) | p(d = 1) |
< p(d = 3) | < p(d = 1) | < p(d = 3) | |
< p(d = 2) | < p(d = 2) | < p(d = 2) | |
H | p(h = 1) | p(h = 3) | p(h = 1) > 0.99 |
< p(h = 3) | < p(h = 1) | ||
< p(h = 2) | < p(h = 2) | ||
K | p(k = 3) | p(k = 1) > 0.9 | p(k = 1) |
< p(k = 1) | < p(k = 3) | ||
< p(k = 2) | < p(k = 2) | ||
L | p(l = 2) > 0.9 | p(l = 3) | p(l = 1) > 0.9 |
< p(l = 1) | |||
< p(l = 2) | |||
N | p(l = 1) | p(n = 1) > 0.9 | p(l = 3) |
< p(l = 3) | < p(l = 2) | ||
< p(l = 2) | < p(l = 1) |
Table 5
Classification results on Wine data according to four feature combinations"
Node | ML | CML | MAP | CBE |
B, C, G, I, J, K, L, M, N | 0.93 | 0.94 | 0.95 | 0.96 |
B, C, D, E, F, G, I, K, L, N | 0.79 | 0.79 | 0.88 | 0.89 |
B, C, D, E, F, G, I, J, K, L, M, N | 0.82 | 0.81 | 0.92 | 0.94 |
B, C, D, E, F, G, H, I, J, K, L, M, N | 0.79 | 0.74 | 0.92 | 0.93 |
1 | PEARL J. Probabilistic reasoning in intelligent systems:networks of plausible inference. San Mateo: Morgan Kaufmann Publishers, 1988. |
2 | DE CAMPOS L M. A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. Journal of Machine Learning Research, 2006, 7, 2149- 2187. |
3 |
JAWORSKA J, GABBERT S, ALDENBERG T. Towards optimization of chemical testing under REACH:a Bayesian network approach to integrated testing strategies. Regulatory Toxicology and Pharmacology, 2010, 57 (2-3): 157- 167.
doi: 10.1016/j.yrtph.2010.02.003 |
4 |
VELIKOVA M, VAN SCHELTINGA J T, LUCAS P J F. Exploiting causal functional relationships in Bayesian network modelling for personalised healthcare. International Journal of Approximate Reasoning, 2014, 55 (1): 59- 73.
doi: 10.1016/j.ijar.2013.03.016 |
5 |
SUK H, SIN B K, LEE S W. Hand gesture recognition based on dynamic Bayesian network framework. Pattern Recognition, 2010, 43 (9): 3059- 3072.
doi: 10.1016/j.patcog.2010.03.016 |
6 |
YANG G S, LIN Y, BHATTACHARYA P. A driver fatigue recognition model based on information fusion and dynamic Bayesian network. Information Sciences, 2010, 180 (10): 1942- 1954.
doi: 10.1016/j.ins.2010.01.011 |
7 |
CHAN T U, HART B T, KENNARD M J. Bayesian network models for environmental flow decision making in the Daly River, Northern Territory, Australia. River Research and Applications, 2012, 28 (3): 283- 301.
doi: 10.1002/rra.1456 |
8 |
ZHANG Y Z, QU Y H, WANG J D. Estimating leaf area index from MODIS and surface meteorological data using a dynamic Bayesian network. Remote Sensing of Environment, 2012, 127, 30- 43.
doi: 10.1016/j.rse.2012.08.015 |
9 |
PLANT N G, HOLLAND K T. Prediction and assimilation of surf-zone processes using a Bayesian network Part Ⅰ:forward models. Coastal Engineering, 2011, 58 (1): 119- 130.
doi: 10.1016/j.coastaleng.2010.09.003 |
10 | CHANG R, SHOEMAKER R, WANG W. A novel knowledgedriven systems biology approach for phenotype prediction upon genetic intervention. IEEE/ACM Trans. on Computational Biology and Bioinformatics, 2011, 3 (8): 683- 697. |
11 |
CONSTANTINOU A C, FENTON N, MARSH W, et al. From complex questionnaire and interviewing data to intelligent Bayesian network models for medical decision support. Artificial Intelligence in Medicine, 2016, 67, 75- 93.
doi: 10.1016/j.artmed.2016.01.002 |
12 |
CONSTANTINOU A C, FREESTONE M, MARSH W, et al. Risk assessment and risk management of violent reoffending among prisoners. Expert Systems with Applications, 2015, 42 (21): 7511- 7529.
doi: 10.1016/j.eswa.2015.05.025 |
13 |
YET B, PERKINGS Z, FENTON N, et al. Not just data:a method for improving prediction with knowledge. Journal of Biomedical Informatics, 2014, 48, 28- 37.
doi: 10.1016/j.jbi.2013.10.012 |
14 |
CASTELO R, SIEBES A. Priors on network structures. Biaing the search for Bayesian networks. International Journal of Approximate Reasoning, 2000, 24 (1): 39- 57.
doi: 10.1016/S0888-613X(99)00041-9 |
15 | FENTON N, NEIL M, LAGNADO D A. A general structure for legal aruments about evidence using Baysian networks. Cognitive Science, 2013, 37 (1): 61- 102. |
16 | DRUDZEL M J. Probabilistic reasoning in decision support systems:from computation to common sense. Pittsburgh, USA: Carnegie Mellon University, 1993. |
17 |
BRUNK H D. Maximum likelihood estimates of monotone parameters. Annals of Mathematical Statistics, 1955, 26 (4): 607- 616.
doi: 10.1214/aoms/1177728420 |
18 |
DRUDZEL M J, VAN DER GAAG L C. Building probabilistic networks:where do the numbers come from? IEEE Trans. on Knowledge and Data Engineering, 2000, 12 (4): 481- 486.
doi: 10.1109/TKDE.2000.868901 |
19 | SIJBERS J, DEN DEKKER A J, SCHEUNDERS P, et al. Maximum likelihood estimation of Rician distribution parameters. IEEE Trans. on Medical Imaging, 2011, 17 (3): 357- 361. |
20 |
FEELDERS A, VAN DER GAAG L C. Learning Bayesian network parameters under order constraints. International Journal of Approximate Reasoning, 2006, 42 (1-2): 37- 53.
doi: 10.1016/j.ijar.2005.10.003 |
21 | DRUDZEL M J, VAN DER GAAG L C. Elicitation of probabilities for belief networks:combining qualitative and quantitative information. Proc. of the 11th Conference on Uncertainty in Artificial Intelligence, 1995, 141- 148. |
22 | ZHOU Y, FENTON N, TIMOTHY M H, et al. Probabilistic graphical models parameter learning with transferred prior and constraints. Proc. of the 31st Conference on Uncertainty in Artificial Intelligence, 2015, 972- 981. |
23 | HECKERMAN D, GEIGER D, CHICHERING D M. Learning Bayesian networks:the combination of knowledge and statistical data. Machine Learning, 1995, 20 (3): 197- 243. |
24 | CHANG R, WANG W. Novel algorithm for Bayesian paramter learning with informative prior constraints. Proc. of the IEEE International Joint Conference on Neural Networks, 2010, 1- 8. |
25 | DAVIS P J, RABINOWITZ P. Methods of numerical integration. FENG Z X, WU F L Trans. Beijing: Higher Education Press, 1986: 235- 255. |
26 | ZHOU Y, FENTON N, ZHOU C. An empirical study of Bayesian network parameter learning with monotonic influence constraints. Decision Support System, 2016, 87 (C): 69- 79. |
27 |
LIAO W H, JI Q. Learning Bayesian network parameters under incomplete data with domain knowledge. Pattern Recognition, 2009, 42 (11): 3046- 3056.
doi: 10.1016/j.patcog.2009.04.006 |
28 | ALTENDORF E E, RESTIFICAR A, DIETTERICH T. Learning from sparse data by exploiting monotonicity constraints. Proc. of the 21st International Conference on Uncertainty in Artificial Intelligence in Edinburgh, 2005, 18- 26. |
29 | WITTING F, JAMESON A. Exploiting qualitative knowledge in the learning of conditional probabilities of Bayesian networks. Proc. of the 16th International Conference on Uncertainty in Artificial Intelligence, 2000, 644- 652. |
30 | NICULESCU R S, MITCHELL T M, RAO R B. A theoretical framework for learning Bayesian networks with parameter inequality constraints. Proc. of the 20th International Joint Conference on Artificial Intelligence, 2007, 155- 160. |
31 | NICULESCU R S, MITCHELL T M, RAO R B. Bayesian network parameter learning with parameter constraints. Journal of Machine Learning Research, 2006, 7 (3): 1357- 1383. |
32 | NOCEDAL J, WRIGHT S J. Least-squares problems. NOCEDAL J, WRIGHT S ed. Numerical optimization. New York: Springer, 2006: 245- 269. |
33 | DE CAMPOS C, TONG Y, JI Q. Constrained maximum likelihood learning of Bayesian networks for facial action recognition. Proc. of the European Conference on Computer Vision, 2008, 168- 181. |
34 |
DE CAMPOS C, JI Q. Improving Bayesian network parameter learning using constraints. Proc. of the 19th International Conference on Pattern Recognition, 2018, 1- 4.
doi: 10.1109/ICPR.2008.4761287 |
35 | FEELDERS A, VAN DER GAAG L C. Learning Bayesian network parameters with prior knowledge about contexspecific qualitative influences. Computer Science, 2012, arXiv: 1207.1387. |
36 | BRUNK H. Maximum likelihood estimates of monotone parameters. Annals of Mathematical Statistics, 1955, 26 (1): 607- 611. |
37 |
ZHOU Y, FENTON N, NEIL M. Bayesian network approach to multinomial parameter learning using data and expert judgments. International Journal of Approximate Reasoning, 2014, 55 (5): 1252- 1268.
doi: 10.1016/j.ijar.2014.02.008 |
38 | ZHOU Y, FENTON N, NEIL M. An extended MPL-C model for Bayesian network parameter learning with exterior constraints. VAN DER GAAG L, FEELDERS A ed. Probabilistic graphical models. Utrecht, The Netherlands: Springer International Publishing, 2014: 581- 596. |
39 | LANGSETH H, MARQUEZ D, NEIL M. Fast approximate inference in hybrid Bayesian networks using dynamic discretization. Proc. of the International Work Conference on the Interplay between Natural and Artificial Computation, 2013, 7930 (3): 225- 234. |
40 |
NEIL M, TAILOR M, MARQUEZ D. Inference in hybrid Bayesian networks using dynamic discretization. Statistics and Computing, 2007, 17 (3): 219- 233.
doi: 10.1007/s11222-007-9018-y |
41 | GAN B S. Numerical integration. GAN B S ed. An isogeometric approach to beam structures. Utrecht, The Netherlands: Springer International Publishing, 2018: 47- 59. |
42 | BOERLAGE B. Link strength in Bayesian networks. Vancouver, Canada: University of British Columbia, 1992. |
43 | SCUTARI M. Bnlearn-an R package for Bayesian network learning and inference. http://www.bnlearn.com/bnrepository/. |
44 |
KULLBACK S, LEIBLER R A. On information and sufficiency. The Annals of Mathematical Statistics, 1951, 22 (1): 79- 86.
doi: 10.1214/aoms/1177729694 |
45 | KOLLER D, FRIEDMAN N. Probabilistic graphical models:principles and techniques. London: The MIT Press, 2009. |
46 | CHEN Y C, WHEELER T A, KOCHENDERFER M J. Learning discrete Bayesian networks from continuous data. Computer Science, 2015, 59, 103- 132. |
47 | MEEHAN A, DE CAMPOS C. Averaged extended tree augmented naïve classifier. Entropy, 2015, 17 (7): 5085- 5100. |
48 |
LUIS R, SUCAR L E, MORALE E F. Inductive transfer for learning Bayesian networks. Machine Learning, 2010, 79 (1-2): 227- 255.
doi: 10.1007/s10994-009-5160-4 |
[1] | Fang YE, Ying MAO, Yibing LI, Xinrui LIU. Target threat estimation based on discrete dynamic Bayesian networks with small samples [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1135-1142. |
[2] | Hongwei ZHANG, Weixin XIE. Constrained auxiliary particle filtering for bearings-only maneuvering target tracking [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 684-695. |
[3] | Ruohai Di, Xiaoguang Gao, and Zhigao Guo. Learning Bayesian network parameters under new monotonic constraints#br# [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1248-1255. |
[4] | Jiufu Liu, Wenliang Liu, Jianyong Zhou, Yan Sun, and Zhisheng Wang. Improved design of online fault diagnoser for partially observed Petri nets with generalized mutual exclusion constraints [J]. Systems Engineering and Electronics, 2017, 28(5): 971-978. |
[5] | Shuai Hao1,*, Yongmei Cheng2, and Xu Ma1. Robust detection algorithm with triple constraints for cooperative target based on spectral residual [J]. Systems Engineering and Electronics, 2017, 28(4): 654-. |
[6] | Liang Yang, Wanchun Chen, Xiaoming Liu, and Hao Zhou. Robust entry guidance using multi-segment linear pseudospectral model predictive control [J]. Systems Engineering and Electronics, 2017, 28(1): 103-. |
[7] | Feng Tan, Mingzhe Hou, and Guangren Duan. Stabilization of linear time-varying systems with state and input constraints using convex optimization [J]. Systems Engineering and Electronics, 2016, 27(3): 649-655. |
[8] | Zhen He and Yuping Lu. Constrained cooperative control design for distributed morphing wing systems [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 588-595. |
[9] | Xiongbo Wan, Huajing Fang, and Sheng Fu. Fault detection for networked systems subject to access constraints and packet dropouts [J]. Journal of Systems Engineering and Electronics, 2011, 22(1): 127-134. |
[10] | Ling Wang?, Dongmei Fu, Qing Li, and Zhichun Mu. Modelling method with missing values based on clustering and support vector regression [J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 142-147. |
[11] | Bo Yang, Huajing Fang, and Hua Wang. Second-order consensus in networks of dynamic agents with communication time-delays [J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 88-94. |
[12] | Zhang Qunliang & Xi Yugeng. Resilient predictive control for a class of uncertain time-delay systems [J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 334-340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||