Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (2): 327-342.doi: 10.21629/JSEE.2019.02.12
• Systems Engineering • Previous Articles Next Articles
Jian'gang PENG*(), Mingzhou LIU(), Xi ZHANG(), Lin LING()
Received:
2017-05-08
Online:
2019-04-01
Published:
2019-04-28
Contact:
Jian'gang PENG
E-mail:jiangang@163.com;LiuMingZhou0551@163.com;isaachft@126.com;linglin8787@123.com
About author:
PENG Jiangang was born in 1970. He is currently a Ph.D. and an associate research fellow at School of Mechanical Engineering in Hefei University of Technology, China. His main research interests include production planning and scheduling, quality function deployment, decision-making analysis, fuzzy theory and multi-objective optimization algorithm. E-mail:peng Supported by:
Jian'gang PENG, Mingzhou LIU, Xi ZHANG, Lin LING. Hybrid heuristic algorithm for multi-objective scheduling problem[J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 327-342.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Values of CPU time at the 5 000th iteration"
Problem | Algorithm | Time/s | |||
1 | 2 | 3 | Average | ||
DTLZ1 | HS | 11.370 1 | 11.504 6 | 10.928 2 | 11.267 6 |
HS+OBL | 11.733 0 | 11.669 0 | 11.797 5 | 11.733 2 | |
OGHS | 11.080 0 | 11.153 3 | 11.064 3 | 11.099 2 | |
DTLZ2 | HS | 11.142 2 | 11.116 9 | 10.970 5 | 11.076 5 |
HS+OBL | 11.031 8 | 10.966 2 | 11.100 8 | 11.032 9 | |
OGHS | 11.186 1 | 11.055 9 | 11.323 1 | 11.188 4 | |
DTLZ3 | HS | 11.059 4 | 10.894 9 | 11.180 0 | 11.044 8 |
HS+OBL | 11.127 5 | 11.278 7 | 10.986 8 | 11.131 0 | |
OGHS | 11.275 6 | 10.867 7 | 11.225 6 | 11.123 0 | |
DTLZ4 | HS | 11.226 3 | 10.967 8 | 10.802 0 | 10.998 7 |
HS+OBL | 11.054 1 | 11.339 2 | 10.878 1 | 11.090 5 | |
OGHS | 11.187 7 | 11.312 8 | 11.200 1 | 11.233 5 | |
DTLZ7 | HS | 11.864 5 | 10.802 2 | 11.920 9 | 11.529 2 |
HS+OBL | 11.348 2 | 11.101 3 | 12.288 2 | 11.579 2 | |
OGHS | 10.903 1 | 11.395 0 | 11.062 1 | 11.120 1 |
Table 3
Values of GD at the 5 000th iteration"
Problem | Algorithm | GD | |||
1 | 2 | 3 | Average | ||
DTLZ1 | HS | 0.018 3 | 0.014 0 | 0.007 8 | 0.013 4 |
HS+OBL | 0.013 3 | 0.014 4 | 0.007 8 | 0.011 8 | |
OGHS | 0.009 7 | 0.010 0 | 0.008 9 | 0.009 5 | |
DTLZ2 | HS | 0.017 1 | 0.017 0 | 0.018 1 | 0.017 4 |
HS+OBL | 0.015 4 | 0.014 9 | 0.017 8 | 0.016 0 | |
OGHS | 0.015 7 | 0.016 4 | 0.016 3 | 0.016 1 | |
DTLZ3 | HS | 0.021 7 | 0.060 7 | 0.081 1 | 0.054 5 |
HS+OBL | 0.018 6 | 0.022 7 | 0.021 5 | 0.020 9 | |
OGHS | 0.019 3 | 0.021 3 | 0.020 3 | 0.020 3 | |
DTLZ4 | HS | 0.101 5 | 0.051 1 | 0.078 7 | 0.077 1 |
HS+OBL | 0.075 0 | 0.058 3 | 0.061 7 | 0.065 0 | |
OGHS | 0.055 0 | 0.059 7 | 0.052 2 | 0.055 6 | |
DTLZ7 | HS | 0.043 4 | 0.064 3 | 0.050 2 | 0.052 6 |
HS+OBL | 0.023 7 | 0.056 5 | 0.052 3 | 0.044 2 | |
OGHS | 0.021 6 | 0.033 1 | 0.035 6 | 0.030 1 |
Table 4
IGD mean and variance values at generation 100, 500, and 3 000"
Problem | Algorithm | Value | Generation | ||
100 | 500 | 3 000 | |||
DTLZ1 | HS | Mean | 0.109 6 | 0.060 4 | 0.056 0 |
Variance | 0.001 9 | 0.000 5 | 0.001 5 | ||
HS+OBL | Mean | 0.084 0 | 0.060 8 | 0.047 7 | |
Variance | 0.001 1 | 0.000 5 | 0.000 7 | ||
OGHS | Mean | 0.088 5 | 0.060 8 | 0.034 7 | |
Variance | 0.001 0 | 0.000 7 | 0.000 5 | ||
DTLZ2 | HS | Mean | 0.123 9 | 0.099 5 | 0.091 3 |
Variance | 0.007 1 | 0.002 7 | 0.003 1 | ||
HS+OBL | Mean | 0.111 4 | 0.097 9 | 0.096 2 | |
Variance | 0.006 1 | 0.003 0 | 0.002 8 | ||
OGHS | Mean | 0.104 3 | 0.091 3 | 0.091 6 | |
Variance | 0.003 4 | 0.002 5 | 0.002 3 | ||
DTLZ3 | HS | Mean | 0.366 5 | 0.238 9 | 0.119 0 |
Variance | 0.026 8 | 0.008 4 | 0.004 6 | ||
HS+OBL | Mean | 0.184 2 | 0.148 4 | 0.105 9 | |
Variance | 0.007 4 | 0.005 3 | 0.004 2 | ||
OGHS | Mean | 0.148 5 | 0.103 3 | 0.097 1 | |
Variance | 0.004 0 | 0.002 9 | 0.002 9 | ||
DTLZ4 | HS | Mean | 0.083 4 | 0.053 5 | 0.049 5 |
Variance | 0.020 0 | 0.005 9 | 0.005 4 | ||
HS+OBL | Mean | 0.068 2 | 0.052 4 | 0.048 4 | |
Variance | 0.009 3 | 0.004 6 | 0.003 2 | ||
OGHS | Mean | 0.063 1 | 0.049 9 | 0.040 1 | |
Variance | 0.010 0 | 0.006 1 | 0.002 6 | ||
DTLZ7 | HS | Mean | 1.413 9 | 1.048 6 | 0.249 3 |
Variance | 0.091 0 | 0.112 5 | 0.010 9 | ||
HS+OBL | Mean | 0.900 9 | 0.636 0 | 0.253 7 | |
Variance | 0.083 6 | 0.063 6 | 0.008 5 | ||
OGHS | Mean | 0.662 0 | 0.508 8 | 0.223 6 | |
Variance | 0.038 1 | 0.033 2 | 0.005 8 |
Table 5
Comparison results for Kacem instances"
Kacem problem | Algorithm | ||||||||||||||||||
PSO+SA | AIA | MOGA | P-DABC | OGHS | |||||||||||||||
10 | 7 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | |||||||
44 | 43 | 42 | 42 | 41 | 45 | 41 | 43 | 42 | 42 | 41 | 43 | ||||||||
6 | 5 | 5 | 6 | 7 | 5 | 7 | 5 | 5 | 6 | 7 | 5 | ||||||||
15 | 12 | 11 | 11 | 12 | 11 | – | 12 | 11 | – | 11 | 11 | – | |||||||
91 | 93 | 91 | 95 | 98 | – | 91 | 93 | – | 94 | 91 | – | ||||||||
11 | 11 | 11 | 10 | 10 | – | 11 | 11 | – | 10 | 11 | – |
Table 6
Comparison results for Brandimarte instance"
Brandimarte problem | AIA | P-DABC | OGHS | |||||||||||||||||
1 | 2 | 3 | 4 | 5 | ||||||||||||||||
20 | 312 | 311 | 313 | 319 | 324 | 411 | 417 | 424 | 431 | 474 | 484 | 346 | 453 | 463 | 466 | 479 | ||||
2 591 | 2 288 | 2 286 | 2 280 | 2 279 | 2 265 | 2 253 | 2 240 | 2 230 | 2 223 | 2 210 | 2 260 | 2 215 | 2 214 | 2 212 | 2 210 | |||||
306 | 299 | 311 | 307 | 307 | 349 | 360 | 386 | 402 | 444 | 454 | 342 | 412 | 422 | 438 | 454 |
Table 8
Most appropriate scheduling scheme for problem 20$\times $10 presented by Brandimarte $\mathit{{(f_{1} = 346, }}$ $\mathit{{f_{2} = 226\; 0, }}$ $\mathit{{f_{3} = 342)}}$"
Operation | ||||||||
M2(87, 97) | M8(99, 116) | M8(116, 130) | M1(131, 141) | M10(142, 160) | M9(160, 166) | M7(166, 175) | ||
M1(196, 203) | M9(203, 214) | M4(290, 306) | M2(316, 321) | M4(322, 328) | - | - | ||
M8(0, 17) | M5(17, 23) | M2(57, 67) | M5(74, 83) | M3(122, 133) | M1(141, 149) | M7(149, 154) | ||
M1(168, 175) | M7(201, 210) | M1(271, 281) | M3(281, 292) | M4(306, 322) | M5(322, 330) | - | ||
M7(0, 5) | M5(8, 17) | M10(44, 62) | M1(79, 90) | M4(90, 96) | M4(96, 112) | M1(161, 168) | ||
M1(203, 213) | M5(213, 219) | M3(223, 234) | M3(234, 248) | - | - | - | ||
M1(26, 34) | M1(34, 41) | M1(41, 47) | M8(130, 144) | M4(144, 160) | M8(175, 192) | M4(197, 204) | ||
M5(204, 209) | M3(209, 223) | M7(223, 232) | M1(281, 291) | - | - | - | ||
M8(17, 34) | M4(34, 50) | M5(56, 65) | M10(65, 71) | M4(160, 167) | M2(173, 189) | M7(189, 194) | ||
M8(209, 223) | M5(223, 229) | M10(229, 239) | M4(239, 245) | M5(245, 254) | M1(291, 299) | M1(307, 314) | ||
M2(0, 5) | M10(6, 24) | M1(63, 73) | M3(94, 108) | M5(108, 117) | M7(125, 134) | M8(192, 209) | ||
M8(223, 237) | M2(237, 242) | M7(242, 247) | M1(247, 253) | - | - | - | ||
M8(34, 48) | M8(48, 65) | M5(65, 74) | M4(74, 90) | M1(106, 116) | M2(125, 130) | M2(135, 140) | ||
M5(149, 155) | M4(211, 217) | M1(223, 229) | M2(229, 237) | M7(237, 242) | M4(276, 283) | M10(283, 301) | ||
M1(0, 10) | M10(24, 30) | M5(38, 47) | M7(66, 75) | M9(75, 86) | M2(130, 135) | M7(154, 159) | ||
M2(159, 164) | M2(164, 172) | M4(217, 223) | M2(267, 277) | M3(292, 303) | M5(306, 312) | - | ||
M8(65, 82) | M2(82, 87) | M1(90, 100) | M4(112, 128) | M5(128, 134) | M7(134, 143) | M2(145, 153) | ||
M9(166, 177) | M9(177, 183) | M2(209, 219) | M5(254, 263) | - | - | - | ||
M4(0, 16) | M1(73, 79) | M3(80, 94) | M2(105, 110) | M9(110, 121) | M9(128, 137) | M5(143, 149) | ||
M4(204, 211) | M2(219, 229) | M3(270, 281) | M1(314, 322) | M1(322, 332) | - | - | ||
M9(0, 11) | M5(23, 32) | M2(97, 105) | M4(128, 144) | M1(149, 155) | M5(155, 164) | M3(164, 174) | ||
M3(185, 199) | M1(237, 247) | M4(247, 254) | - | - | - | - | ||
M10(0, 6) | M1(10, 16) | M4(50, 66) | M9(66, 72) | M7(75, 80) | M7(80, 89) | M2(140, 145) | ||
M8(254, 268) | M4(270, 276) | M5(286, 292) | M2(292, 308) | - | - | - | ||
M2(5, 10) | M3(14, 28) | M9(37, 43) | M5(47, 56) | M2(120, 125) | M4(167, 174) | M1(175, 186) | ||
M8(237, 254) | M1(254, 261) | M1(261, 271) | M7(271, 280) | - | - | - | ||
M5(0, 8) | M1(16, 26) | M2(26, 42) | M2(110, 120) | M7(120, 125) | M1(125, 131) | M4(174, 190) | ||
M4(190, 197) | M7(210, 219) | M3(248, 259) | - | - | - | - | ||
M1(47, 57) | M1(57, 63) | M2(67, 72) | M2(72, 80) | M5(83, 89) | M9(89, 95) | M2(153, 158) | ||
M5(164, 169) | M4(223, 239) | M3(259, 270) | M2(277, 287) | M7(287, 292) | - | - | ||
M8(82, 99) | M1(100, 106) | M3(108, 122) | M9(122, 128) | M8(161, 175) | M7(175, 180) | M7(180, 189) | ||
M2(189, 194) | M1(229, 237) | M2(242, 252) | M4(254, 270) | M5(270, 278) | M1(332, 339) | M5(339, 344) | ||
M2(18, 26) | M9(26, 37) | M7(37, 46) | M8(144, 161) | M10(161, 167) | M5(169, 175) | M1(186, 196) | ||
M7(196, 201) | M2(252, 262) | M10(262, 280) | M4(283, 290) | M3(303, 317) | M1(339, 346) | - | ||
M2(10, 18) | M4(23, 29) | M5(32, 38) | M10(38, 44) | M3(44, 58) | M5(95, 103) | M9(137, 148) | ||
M2(194, 204) | M2(262, 267) | M8(285, 299) | M1(299, 307) | - | - | - | ||
M3(0, 14) | M2(42, 52) | M7(52, 61) | M10(71, 89) | M3(133, 144) | M1(155, 161) | M3(174, 185) | ||
M2(204, 209) | M5(229, 234) | M5(234, 243) | M2(287, 292) | M5(292, 297) | M5(297, 306) | - | ||
M4(16, 23) | M2(52, 57) | M7(61, 66) | M3(66, 80) | M5(89, 95) | M1(116, 122) | M5(134, 143) | ||
M1(213, 223) | M8(268, 285) | M9(285, 291) | M2(308, 316) | M3(317, 328) | M2(328, 344) | - |
1 |
ZUO Y, GU H Y, XI Y G. Modified bottleneck-based heuristic for large-scale job-shop scheduling problems with a single bottleneck. Journal of Systems Engineering and Electronics, 2007, 18 (3): 556- 565.
doi: 10.1016/S1004-4132(07)60129-7 |
2 |
LI K, YANG S L. Heuristic algorithms for scheduling on uniform parallel machines with heads and tails. Journal of Systems Engineering and Electronics, 2011, 22 (3): 462- 467.
doi: 10.3969/j.issn.1004-4132.2011.03.014 |
3 |
SAIDI M M, FATTAHI P. Flexible job shop scheduling with tabu search algorithms. International Journal of Advanced Manufacturing Technology, 2007, 32 (5-6): 563- 570.
doi: 10.1007/s00170-005-0375-4 |
4 | SHEN L, DAUZÈRE-PÉRÈS S, NEUFELD J S. Solving the flexible job shop scheduling problem with sequence-dependent setup times. European Journal of Operational Research, 2018, 265 (2): 503- 516. |
5 |
LIU Q, CHEKEM F O, ZHAN M, et al. A hybrid fruit fly algorithm for solving flexible job-shop scheduling to reduce manufacturing carbon footprint. Journal of Cleaner Production, 2017, 168, 668- 678.
doi: 10.1016/j.jclepro.2017.09.037 |
6 | GAREY M R, JOHNSON D S, SETHI R. The complexity of flow-shop and job-shop scheduling. Mathematics of Operations Research, 1976, 1 (2): 117- 129. |
7 | BRUCKER P, SCHLIE R. Job-shop scheduling with multipurpose machines. Computing, 1990, 45 (4): 369- 375. |
8 |
BRANDIMARTE P. Routing and scheduling in a flexible jobshop by taboo search. Annals of Operations Research, 1993, 41 (3): 157- 183.
doi: 10.1007/BF02023073 |
9 |
SEYED H A R, ZANDIEH M. A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2012, 58 (9-12): 1115- 1129.
doi: 10.1007/s00170-011-3437-9 |
10 |
ISHIKAWA S, KUBOTA R, HORIO K. Effective hierarchical optimization by a hierarchical multi-space competitive genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 2015, 42 (24): 9434- 9440.
doi: 10.1016/j.eswa.2015.08.003 |
11 |
YUAN Y, XU H, YANG J D. A hybrid harmony search algorithm for the flexible job shop scheduling problem. Applied Soft Computing, 2013, 13 (7): 3259- 3272.
doi: 10.1016/j.asoc.2013.02.013 |
12 | SINGH M R, MAHAPATRA S S. A quantum behaved particle swarm optimization for flexible job shop scheduling. Computers & Industrial Engineering, 2016, 93, 36- 44. |
13 | MATI Y, REZG N, XIE X L. An integrated greedy heuristic for a flexible job shop scheduling problem. Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2001, 2534- 2539. |
14 |
LIU A J, MICHELE P, JOHN F. Scheduling optimization of task allocation in integrated manufacturing system based on task decomposition. Journal of Systems Engineering and Electronics, 2016, 27 (2): 422- 433.
doi: 10.1109/JSEE.2016.00043 |
15 |
NOUIRI M, BEKRAR A, JEMAI A, et al. An effective and distributed partical swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 2018, 29 (3): 603- 615.
doi: 10.1007/s10845-015-1039-3 |
16 |
SHEN X N, HAN Y, FU J Z. Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems. Soft Computing, 2017, 21 (21): 6531- 6554.
doi: 10.1007/s00500-016-2245-4 |
17 | ZHANG Y, WANG J, LIU Y. Game theory based real-time multi-objective flexible job shop scheduling considering environmental impact. Journal of Cleaner Production, 2017, 167 (20): 665- 679. |
18 |
ZITZLER E, THIELE L. Multi-objective evolutionary:a comparative case study and the strength Pareto approach. IEEE Trans. on Evolutionary Computation, 1999, 3 (4): 257- 271.
doi: 10.1109/4235.797969 |
19 | CORNE D W, JERRAM N R, KNOWLES J D, et al. PESAII:region-based selection in evolutionary multi-objective optimization. Proc. of the 3rd Annual Conference on Genetic and Evolutionary Computation, 2001, 283- 290. |
20 |
SRINIVAS N, DED K. Multi-objective optimization using non-dominated sorting genetic algorithm. Evolutionary Computation, 1994, 2 (3): 221- 248.
doi: 10.1162/evco.1994.2.3.221 |
21 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithms:NSGA-Ⅱ. IEEE Trans. on Evolutionary Computation, 2002, 6 (2): 182- 197. |
22 |
LI J Q, PAN Q K, XIE S X. A hybrid variable neighborhood search algorithm for solving multi-objective flexible job shop problems. Computer Science and Information Systems, 2010, 7 (4): 907- 930.
doi: 10.2298/CSIS090608017L |
23 |
RAHMATI S H A, ZANDIEH M, YAZDANI M. Developing two multi-objective evolutionary algorithms for the multiobjective flexible job shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2013, 64 (5-8): 915- 932.
doi: 10.1007/s00170-012-4051-1 |
24 | WANG X J, LI W F, ZHANG Y. An improved multi-objective genetic algorithm for fuzzy flexible job-shop scheduling problem. International Journal of Computer Applications in Technology, 2013, 47 (2-3): 280- 288. |
25 |
ROHANINEJAD M, KHEIRKHAH A. A hybrid multiobjective genetic algorithm based on the ELECTRE method for a capacitated flexible job shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2015, 77 (1-4): 51- 66.
doi: 10.1007/s00170-014-6415-1 |
26 | JIA S, HU Z. Path-relinking tabu search for the multi-objective flexible job shop scheduling problem. Computers & Operations Research, 2014, 47 (9): 11- 26. |
27 | ZHANG G H, SHAO X Y, LI G, et al. An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 2009, 56 (4): 1309- 1318. |
28 |
VILCOT G, BILLAUT J C. A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem. International Journal of Production Research, 2011, 49 (23): 6963- 6980.
doi: 10.1080/00207543.2010.526016 |
29 |
LI J Q, PAN Q K, SUGANTHAN P N, et al. A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2011, 52 (5-8): 683- 697.
doi: 10.1007/s00170-010-2743-y |
30 | KAPLANOGLU V. An object-oriented approach for multiobjective flexible job-shop scheduling problem. Expert System with Applications, 2016, 45 (1): 71- 84. |
31 | XIA W J, WU Z M. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 2005, 48 (2): 409- 425. |
32 | LOW C YY, YIP Y, WU T H. Modeling and heuristics of FMS scheduling with multiple objectives. Computers & Operations Research, 2006, 33 (3): 674- 694. |
33 | GAO K Z, SUGANTHAN P N, PAN Q K, et al. Paretobased grouping discrete harmony search algorithm for multiobjective flexible job shop scheduling. Information Sciences, 2014, 289 (24): 76- 90. |
34 | TAN K C, CHIAMS S C, MAMUN A A, et al. Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. European Journal of Operational Research, 2009, 197 (2): 701- 713. |
35 | KACEM I, HAMMADI S, BORNE P. Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems. IEEE Trans. on Systems, Man and Cybernetics, 2002, 32 (l): l- 13. |
36 |
ALTANNAR C, PANOS M, PARDALOS. A survey of recent developments in multi-objective optimization. Annals of Operations Research, 2007, 154 (1): 29- 50.
doi: 10.1007/s10479-007-0186-0 |
37 |
BAUMGARTNER U, MAGELE C, RENHART W. Pareto optimality and particle swarm optimization. IEEE Trans. on Magnetics, 2004, 40 (2): 1172- 1175.
doi: 10.1109/TMAG.2004.825430 |
38 | PARETO V. Manual of political economy. SCHWIER A S Trans. New York: Anguitus M. Kelly, 1971. |
39 |
KONAK A, COIT D W, SMITH A E. Multi-objective optimization using genetic algorithms:a tutoria. Reliability Engineering and System Safety, 2006, 91 (9): 992- 1007.
doi: 10.1016/j.ress.2005.11.018 |
40 | GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm:harmony search. Simulation, 2001, 76 (2): 60- 68. |
41 |
LEE K S, GEEM Z W. A new meta-heuristic algorithm for continuous engineering optimization:harmony search theory and practice. Computer Methods in Applied Methanics and Engineering, 2005, 194 (36-38): 3902- 3933.
doi: 10.1016/j.cma.2004.09.007 |
42 | MAHDAVI M, FESANGHARY M, DAMANGIR E. An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 2007, 188 (2): 1567- 1579. |
43 | MAHAMED G H O, MEHRDAD M. Global-best harmony search. Applied Mathematics and Computation, 2008, 198 (2): 643- 656. |
44 | TIZHOOSH H R. Opposition-based learning:a new scheme for machine intelligence. Proc. of the International Conference on Computational Intelligence for Modeling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, 2005, 1, 695- 701. |
45 | WANG H, LIU Y, ZENG S Y, et al. Opposition-based particle swarm algorithm with Cauchy mutation. Proc. of the IEEE Congress on Evolutionary Computation, 2007, 4750- 4756. |
46 | SHAHZAD F, BAIG A R, MASOOD S, et al. Oppositionbased particle swarm optimization with velocity clamping. Advances in computational intelligence. Berlin, Heidelberg: Springer, 2009, 61: 339-348. |
47 |
RAHNAMAYAN S, TIZHOOSH H R, SALAM M. Opposition-based differential evolution. IEEE Trans. on Evolutionary Computation, 2008, 12 (1): 64- 79.
doi: 10.1109/TEVC.2007.894200 |
48 | ERGEZER M, SIMON D, DU D. Oppositional biogeographybased optimization. Proc. of the IEEE International Conference on Systems, Man and Cybernetics, 2009, 1009- 1014. |
49 | ERGEZER M, SIMON D. Oppositional biogeography-based optimization for combinatorial problems. Proc. of the IEEE Congress on Evolutionary Computation, 2011, 1496- 1503. |
50 | GEN M, TSUJIMURA Y, KUBOTA E. Solving job-shop scheduling problem using genetic algorithms. Proc. of the 16th International Conference on Computer and Industrial Engineering, 1994, 576- 579. |
51 | BEAN J C. Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing, 1994, 6 (2): 154- 160. |
52 | OUYANG H B, GAO L Q, ZOU D X, et al. Exploration ability study of harmony search algorithm and its modification. Control Theory & Applications, 2014, 31 (1): 57- 65. |
53 |
TAN K C, YANG Y J, GOH C K. A distributed cooperative coevolutionary algorithm for multi-objective optimization. IEEE Trans. on Evolutionary Computation, 2006, 10 (5): 527- 549.
doi: 10.1109/TEVC.2005.860762 |
54 | DEB K, THIELE L, LAUMANNS M, et al. Scalable multiobjective optimization test problems. Proc. of the Congress on Evolutionary Computation, 2002, 825- 830. |
55 | LI H, ZHANG Q F. Multi-objective optimization problems with complicated Pareto sets, MOEA/D and NSGA-Ⅱ. IEEE Trans. on Evolutionary Computation, 2009, 13 (2): 284- 302. |
56 |
KACEM I, HAMMADI S, BORNE P. Pareto-optimality approach for flexible job-shop scheduling problems:hybridization of evolutionary algorithms and fuzzy logic. Mathematics and Computers in Simulation, 2002, 60 (3-5): 245- 276.
doi: 10.1016/S0378-4754(02)00019-8 |
57 |
BAGHERI A, ZANDIEH M, MAHDAVI I, et al. An artificial immune algorithm for the flexible job-shop scheduling problem. Future Generation Computer Systems, 2010, 26 (4): 533- 541.
doi: 10.1016/j.future.2009.10.004 |
58 |
WANG X J, GAO L, ZHANG C Y, et al. A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2010, 51 (5-8): 757- 767.
doi: 10.1007/s00170-010-2642-2 |
59 |
LI J Q, PAN Q K, GAO K Z. Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. International Journal of Advanced Manufacturing Technology, 2011, 55 (9-12): 1159- 1169.
doi: 10.1007/s00170-010-3140-2 |
60 | OPRICOVIC S, TZENG G H. Compromise solution by MCDM methods:a comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 2004, 156 (2): 445- 455. |
61 | HWANG C L, YOON K. Multiple attribute decision making. Berlin: Springer-Verlag, 1981. |
62 |
SHEN F, MA X, LI Z, et al. An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Information Sciences, 2018, 428, 105- 119.
doi: 10.1016/j.ins.2017.10.045 |
63 | SILVIA C, ANTONELLA C, JOAQUÍN I, et al. K-out-of-n systems:an exact formula for the stationary availability and multi-objective configuration design based on mathematical programming and TOPSIS. Journal of Computational and Applied Mathematics, 2018, 330 (1): 1007- 1015. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||