Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (2): 270-277.doi: 10.21629/JSEE.2019.02.06
• Defence Electronics Technology • Previous Articles Next Articles
Shuang ZHANG1,*(), Xiangchuan YU2(), Lu WANG1()
Received:
2018-05-16
Online:
2019-04-01
Published:
2019-04-28
Contact:
Shuang ZHANG
E-mail:zhangshuang@xaut.edu.cn;yu.xiangchuan@zte.com.cn;xidain@163.com
About author:
ZHANG Shuang was born in 1983. She received her B.S. degree in School of Information Engineering from Liaoning University in 2006, Shenyang, China. She received her Ph.D. degree in School of Electronic Engineering from Xidian University, Xi'an, China, in 2015. She is currently a lecturer at School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, China. Her research interests are interpretation and processing of PolSAR data and deep learning in the complicated data. E-mail:Supported by:
Shuang ZHANG, Xiangchuan YU, Lu WANG. Modified version of three-component model-based decomposition for polarimetric SAR data[J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 270-277.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | LEE J S, POTTIER E. Polarimetric radar imaging-from basics to applications. Boca Raton: CRC Press, 2008. |
2 |
CLOUDE R, POTTIER E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. on Geoscience and Remote Sensing, 1996, 34 (2): 498- 518.
doi: 10.1109/36.485127 |
3 |
YAMAGUCHI Y. Disaster monitoring by fully polarimetric SAR data acquired with ALOS-PALSAR. Proceedings of the IEEE, 2012, 100 (10): 2851- 2860.
doi: 10.1109/JPROC.2012.2195469 |
4 |
CHEN S W, WANG X S, XIAO S P. Urban damage level mapping based on co-polarization coherence pattern using multitemporal polarimetric SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (8): 2657- 2667.
doi: 10.1109/JSTARS.2018.2818939 |
5 | JI Y Q, SUMANTYO S T S, CHUA M Y, et al. Earthquake/Tsunami damage assessment for urban areas using postevent PolSAR data. Remote Sensing, 2018, 10 (7): 1- 21. |
6 | GUO J, WEI P L, LIU J, et al. Crop classification based on differential characteristics of H/α scattering parameters for multitemporal quad- and dual-polarization SAR images. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56(10): 6111-6123. |
7 |
CHEN S W, TAO C S. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (4): 627- 631.
doi: 10.1109/LGRS.2018.2799877 |
8 | ZOU Y, ZHANG S L, LIANG C, et al. Research on detection oil spill information based on polarization decomposition. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018, 1206- 1209. |
9 | QIN X X, HU T, YU W S, et al. Edge detection of PolSAR images using statistical distance between automatically refined samples. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018, 645- 648. |
10 |
SUO Z Y, LI M. Robust PolInSAR optimal interferogram estimation method based on generalized scattering vector. Journal of Systems Engineering and Electronics, 2017, 28 (3): 457- 471.
doi: 10.21629/JSEE.2017.03.06 |
11 | HE W, XING M D. Classification method for PolSAR images based on find of density peak. Systems Engineering and Electronics, 2016, 38 (1): 60- 63. |
12 |
DONALD K A, LEATITIA T L. Polarimetric phase and implications for urban classification. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (3): 1278- 1289.
doi: 10.1109/TGRS.2017.2750211 |
13 |
BUONO A, NUNZIATA, MIGLIACCIO, et al. Classification of the Yellow River delta area using fully polarimetric SAR measurements. International Journal of Remote Sensing, 2017, 38 (23): 6714- 6734.
doi: 10.1080/01431161.2017.1363437 |
14 |
CHEN B, WANG S, JIAO L C, et al. A three-component Fisher-based feature weighting method for supervised PolSAR image classification. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (4): 731- 735.
doi: 10.1109/LGRS.2014.2360421 |
15 |
ZHANG S, WANG S, CHEN B, et al. Classification method for fully PolSAR data based on three novel parameters. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (1): 39- 43.
doi: 10.1109/LGRS.2013.2245628 |
16 |
FREEMAN A, DURDEN S L. A three-component scattering model for polarimetric SAR data. IEEE Trans. on Geoscience and Remote Sensing, 1998, 36 (3): 963- 973.
doi: 10.1109/36.673687 |
17 |
CLOUDE S R, POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. on Geoscience and Remote Sensing, 1997, 35 (1): 68- 78.
doi: 10.1109/36.551935 |
18 |
YAMAGUCHI Y, MORIYAMA T, ISHIDO M Y, et al. Fourcomponent scattering model for polarimetric SAR image decomposition. IEEE Trans. on Geoscience and Remote Sensing, 2005, 43 (8): 1699- 1706.
doi: 10.1109/TGRS.2005.852084 |
19 |
FREEMAN A. Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Trans. on Geoscience and Remote Sensing, 2007, 45 (8): 2583- 2592.
doi: 10.1109/TGRS.2007.897929 |
20 |
ARII M, ZYL J J, KIM Y J. Adaptive model-based decomposition of polarimetric SAR covariance matrices. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49 (3): 1104- 1113.
doi: 10.1109/TGRS.2010.2076285 |
21 |
ANTROPOV O, RAUSTE Y, HAME T. Volume scattering modeling in PolSAR decomposition:study of ALOS PALSAR data over Boreal forest. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49 (10): 3838- 3848.
doi: 10.1109/TGRS.2011.2138146 |
22 | WANG Z Z, ZENG Q M, JIAO J. A new volume scattering model for three-component decomposition of polarimetric SAR data. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018, 4575- 4578. |
23 |
XIE Q, BERMAN J D B, SANCHEZ J M L, et al. On the use of generalized volume scattering models for the improvement of general polarimetric model-based decomposition. Remote Sensing, 2017, 9 (2): 117.
doi: 10.3390/rs9020117 |
24 | WANG X, ZHANG L M, ZHU S. A four-component decomposition model for polarimetric SAR images based on adaptive volume scattering model. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018, 4563- 4566. |
25 |
XIE Q H, ZHU J J, SANCHEZ J M L, et al. A modified general polarimetric model-based decomposition method with the simplified Neumann volume scattering model. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (8): 1229- 1233.
doi: 10.1109/LGRS.2018.2830503 |
26 |
DUAN D F, WANG Y. An improved algorithm to delineate urban targets with model-based decomposition of PolSAR data. Remote Sensing, 2017, 9 (10): 1037- 1054.
doi: 10.3390/rs9101037 |
27 | XI Y Y, LANG H T, TAO Y H, et al. Four-component modelbased decomposition for ship targets using PolSAR data. Remote Sensing 2017, 9(10): 621-639. |
28 | HUANG X, WANG J, SHANG J. An integrated surface parameter inversion scheme over agricultural fields at early growing stages by means of C-band polarimetric RADARSAT-2 imagery. IEEE Trans. on Geoscience and Remote Sensing, 2016, 54(5): 2510-2528. |
29 | LIM Y X, BURGIN M S, ZYL J J V. An optimal nonnegative eigenvalue decomposition for the Freeman and Durden threecomponent scattering model. IEEE Trans. on Geoscience and Remote Sensing, 2017, 55(4): 2167-2176. |
30 |
XIANG D, WANG W, TANG T, et al. Multiple-component polarimetric decomposition with new volume scattering models for PolSAR urban areas. IET Radar, Sonar and Navigation, 2017, 11 (3): 410- 419.
doi: 10.1049/iet-rsn.2016.0105 |
31 |
SINGH G, YAMAGUCHI Y. Model-based six-component scattering matrix power decomposition. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (10): 5687- 5704.
doi: 10.1109/TGRS.2018.2824322 |
32 |
XU F, JIN Y Q. Deorientation theory of polarimetric scattering targets and application to terrain surface classification. IEEE Trans. on Geoscience and Remote Sensing, 2005, 43 (10): 2351- 2364.
doi: 10.1109/TGRS.2005.855064 |
33 | CHENG S W, WANG X S, XIAO S P, et al. Target scattering mechanism in polarimetric synthetic aperture radar. Singapore: Springer, 2018. |
34 |
LEE J S, ANISWORTH T. The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49 (1): 53- 64.
doi: 10.1109/TGRS.2010.2048333 |
35 | AN W, CUI Y, YANG J. Three-component model-based decomposition for polarimetric SAR data. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48(6): 2732-2739. |
36 | SINGH G, YAMAGUCHI Y, PARK S E. General fourcomponent scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans. on Geoscience and Remote Sensing, 2013, 51(5): 3014-3022. |
37 | CLOUDE S R. Polarisation:applications in remote sensing. London: Oxford University Press, 2009. |
38 |
SINGH G, YAMAGUCHI Y, PARK S E. Hybrid Freeman/eigenvalue decomposition method with extended volume scattering model. IEEE Geoscience Remote Sensing Letters, 2013, 10 (1): 81- 85.
doi: 10.1109/LGRS.2012.2193373 |
39 | ZHANG S, WANG S, JIAO L C. A novel hybrid Freeman/eigenvalue decomposition with general scattering models. Journal of Infrared and Millimeter Waves, 2015, 34 (3): 265- 270. |
40 |
LEE J S. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47 (1): 202- 213.
doi: 10.1109/TGRS.2008.2002881 |
[1] | Bin Zhang, Guorui Ma2, Zhi Zhang, and Qianqing Qin. Region-based classification by combining MS segmentation and MRF for POLSAR images [J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 400-. |
[2] | Bo Pang, Shiqi Xing, Yongzhen Li, and Xuesong Wang. Novel polarimetric SAR speckle filtering algorithm based on mean shift [J]. Journal of Systems Engineering and Electronics, 2013, 24(2): 222-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||