Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (2): 259-269.doi: 10.21629/JSEE.2019.02.05
• Electronics Technology • Previous Articles Next Articles
Zhoufan LI(), Dan LI*(), Xinlong XU(), Jianqiu ZHANG()
Received:
2018-06-07
Online:
2019-04-01
Published:
2019-04-28
Contact:
Dan LI
E-mail:15210720031@fudan.edu.cn;lidan@fudan.edu.cn;11210720032@fudan.edu.cn;jqzhang@ieee.org
About author:
LI Zhoufan was born in 1992. He received his B.Sc. degree in electrical engineering from Fudan University, Shanghai, China, in 2015. He is currently working towards his M.S. degree in Department of Electronic Engineering, Fudan University, Shanghai, China. His research interests include digital signal processing and its application in wireless communication. E-mail:Supported by:
Zhoufan LI, Dan LI, Xinlong XU, Jianqiu ZHANG. New normalized LMS adaptive filter with a variable regularization factor[J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 259-269.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Simulation parameters of the proposed algorithm and its competitors"
Algorithm | Variable step | Parameter |
SM-NLMS [ | ||
NPVSS-NLMS [ | ||
NVSS-NLMS [ | ||
JO-NLMS [ | ||
NVSS-LMS [ | ||
| ||
Proposed algorithm |
1 | WIDROW B, STEARNS S D. Adaptive signal processing. Englewood Cliffs: Prentice-Hall, 1985. |
2 | HAYKIN S. Adaptive filter theory. 4th ed. Upper Saddle Rier, New Jersey: Prentice-Hall, 2002. |
3 | BENESTY J, HUANG Y. Adaptive signal processingapplications to real-world problems. Berlin: Springer-Verlag, 2003. |
4 | HUANG Y, BENESTY J, CHEN J. Acoustic MIMO signal processing. Boston, MA: Springer, 2006. |
5 |
MA T, CHEN J, CHEN W, et al. Unsupervised robust adaptive filtering against impulsive noise. Journal of Systems Engineering and Electronics, 2012, 23 (1): 32- 39.
doi: 10.1109/JSEE.2012.00005 |
6 | GUO L, JUNG L. Necessary and sufficient conditions for stability of LMS. IEEE Trans. on Automatic Control, 1995, 42 (6): 761- 770. |
7 |
HASSIBI B, SAYED A H, KAILATH T. H∞ optimality of the LMS algorithm. IEEE Trans. on Signal Processing, 1996, 44 (2): 267- 280.
doi: 10.1109/78.485923 |
8 |
EVANS J B, XUE P, LIU B. Analysis and implementation of variable step size adaptive algorithms. IEEE Trans. on Signal Processing, 1993, 41 (8): 2517- 2535.
doi: 10.1109/78.229885 |
9 |
ABOULNASR T, MAYYAS K. A robust variable step-size LMS-type algorithm:analysis and simulations. IEEE Trans. on Signal Processing, 1997, 45 (3): 631- 639.
doi: 10.1109/78.558478 |
10 | PAZAITIS D I, CONSTANTINIDES A G. A novel kurtosis driven variable step-size adaptive algorithm. IEEE Trans. on Signal Processing, 2002, 47 (3): 864- 872. |
11 | ANTWEILER C, GRUNWALD J, QUACK H. Approximation of optimal step size control for acoustic echo cancellation. Proc. of the IEEE International Conference on Acoustics, 1997, 295- 298. |
12 |
MORGAN D R, KRATZER S G. On a class of computationally efficient, rapidly converging, generalized NLMS algorithms. IEEE Signal Processing Letters, 1996, 3 (8): 245- 247.
doi: 10.1109/97.511808 |
13 |
GOLLAMUDI S, NAGARAJ S, KAPOOR S, et al. Setmembership filtering and a set-membership normalized LMS algorithm with an adaptive step size. IEEE Signal Processing Letters, 1998, 5 (5): 111- 114.
doi: 10.1109/97.668945 |
14 | SHIN H C, SAYED A H, SONG W J. Variable step-size NLMS and affine projection algorithms. IEEE Signal Processing Letters, 2008, 11 (2): 132- 135. |
15 |
BENESTY J, REY H, VEGA L R, et al. A nonparametric VSS NLMS algorithm. IEEE Signal Processing Letters, 2006, 13 (10): 581- 584.
doi: 10.1109/LSP.2006.876323 |
16 |
HUANG H C, LEE J. A new variable step-size NLMS algorithm and its performance analysis. IEEE Trans. on Signal Processing, 2012, 60 (4): 2055- 2060.
doi: 10.1109/TSP.2011.2181505 |
17 |
ARABLOUEI R, DOGANCAY K. Linearly-constrained recursive total least-squares algorithm. IEEE Signal Processing Letters, 2012, 19 (12): 821- 824.
doi: 10.1109/LSP.2012.2221705 |
18 | BENESTY J, GAENSLER T, MORGAN D R, et al. Advances in network and acoustic echo cancellation. Berlin: SpringerVerlag, 2001. |
19 | FAZA A, GRANT S L, BENESTY J. Adaptive regularization in frequency-domain NLMS filters. Proc. of the Signal Processing Conference, 2012, 2625- 2628. |
20 |
BENESTY J, PALEOLOGU C, CIOCHINA S. On regularization in adaptive filtering. IEEE Trans. on Audio, Speech and Language Processing, 2011, 19 (6): 1734- 1742.
doi: 10.1109/TASL.2010.2097251 |
21 |
NI J, LI F. Variable regularisation parameter sign subband adaptive filter. Electronics Letters, 2010, 46 (24): 1605- 1607.
doi: 10.1049/el.2010.2406 |
22 |
MADER A, PUDER H, SCHMIDT G U. Step-size control for acoustic echo cancellation filters-an overview. Signal Processing, 2000, 80 (9): 1697- 1719.
doi: 10.1016/S0165-1684(00)00082-7 |
23 |
SULYMAN A I, ZERGUINE A. Convergence and steady-state analysis of a variable step-size NLMS algorithm. Signal Processing, 2003, 83 (6): 1255- 1273.
doi: 10.1016/S0165-1684(03)00044-6 |
24 |
PARK P, CHANG M, KONG N. Scheduled-stepsize NLMS algorithm. IEEE Signal Processing Letters, 2009, 16 (12): 1055- 1058.
doi: 10.1109/LSP.2009.2026197 |
25 |
SONG I, PARK P G. A normalized least-mean-square algorithm based on variable-step-size recursion with innovative input data. IEEE Signal Processing Letters, 2012, 19 (12): 817- 820.
doi: 10.1109/LSP.2012.2221699 |
26 | YUAN Z, SONGTAO X. New LMS adaptive filtering algorithm with variable step size. Proc. of the International Conference on Vision, Image and Signal Processing, 2017, 1- 4. |
27 | LI M, XI X. A new variable step-size NLMS adaptive filtering algorithm. Proc. of the Information Technology and Applications, 2013, 236- 239. |
28 | HUAN Q Y, QIU X H, LIU X F. Variable step LMS algorithm using norm of the hyperbolic tangent function. Journal of Signal Processing, 2014, 30 (1): 93- 99. |
29 | WANG Y, SUN X, LIU L. A variable step size LMS adaptive filtering algorithm based on L2 norm. Proc. of the Signal Processing, Communications and Computing, 2016, 1- 6. |
30 |
CIOCHINĂ S, PALEOLOGU C, BENESTY J. An optimized NLMS algorithm for system identification. Signal Processing, 2016, 118, 115- 121.
doi: 10.1016/j.sigpro.2015.06.016 |
31 |
BHOTTO M Z A, ANTONIOU A. New improved recursive least-squares adaptive-filtering algorithms. IEEE Trans. on Circuits and Systems Ⅰ:Regular Papers, 2013, 60 (6): 1548- 1558.
doi: 10.1109/TCSI.2012.2220452 |
32 |
CASTOLDI F T, DE CAMPOS M L R. Application of a minimum-disturbance description to constrained adaptive filters. IEEE Signal Processing Letters, 2013, 20 (12): 1215- 1218.
doi: 10.1109/LSP.2013.2284384 |
33 |
GUL M M U, MA X, LEE S. Timing and frequency synchronization for OFDM downlink transmissions using zadoff-chu sequences. IEEE Trans. on Wireless Communications, 2015, 14 (3): 1716- 1729.
doi: 10.1109/TWC.2014.2372757 |
[1] | Wenlong Lu, Junwei Xie, Heming Wang, and Chuan Sheng. Parameterized time-frequency analysis to separate multi-radar signals [J]. Systems Engineering and Electronics, 2017, 28(3): 493-502. |
[2] | Wei Gao, Jianguo Huang, Jing Han, and Qunfei Zhang. Theoretical convergence analysis of complex Gaussian kernel LMS algorithm [J]. Systems Engineering and Electronics, 2016, 27(1): 39-. |
[3] | Tao Ma, Jie Chen, Wenjie Chen, and Zhihong Peng. Unsupervised robust adaptive filtering against impulsive noise [J]. Journal of Systems Engineering and Electronics, 2012, 23(1): 32-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||