Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (2): 223-237.doi: 10.21629/JSEE.2019.02.01
• Electronics Technology • Next Articles
Junhua YAN1,2,*(), Xuehan BAI1(), Wanyi ZHANG1(), Yongqi XIAO1(), Chris CHATWIN2(), Rupert YOUNG2(), Phil BIRCH2()
Received:
2017-12-19
Online:
2019-04-01
Published:
2019-04-26
Contact:
Junhua YAN
E-mail:yjh9758@126.com;1595720931@qq.com;daisyzwy917@126.com;couragexyq@163.com;C.R.Chatwin@sussex.ac.uk;R.C.D.Young@sussex.ac.uk;p.m.birch@sussex.ac.uk
About author:
YAN Junhua was born in 1972. She received her B.S. degree, M.S. degree and Ph.D. degree from Nanjing University of Aeronautics and Astronautics in 1993, 2001 and 2004, respectively. She is a professor at Nanjing University of Aeronautics and Astronautics. Her research interests include image quality assessment, multi-source information fusion, target detection, tracking and recognition. E-mail:Supported by:
Junhua YAN, Xuehan BAI, Wanyi ZHANG, Yongqi XIAO, Chris CHATWIN, Rupert YOUNG, Phil BIRCH. No-reference image quality assessment based on AdaBoost BP neural network in wavelet domain[J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 223-237.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Meaning of image NSS feature vector elements in wavelet domain"
Vector elements | Meaning |
Variance | |
Variance | |
Variance | |
Shape parameter | |
Shape parameter | |
Shape parameter |
Table 2
Meaning of local information entropy feature vector elements in wavelet domain"
Vector elements | Meaning |
Mean | |
Mean | |
Mean | |
Skewness | |
Skewness | |
Skewness |
Table 3
LIVE database classification"
Dataset | Categories of distorted images | Types and numbers of distorted image | |||||
WN | BLUR | JPEG | JP2K | FF | All | ||
1 | Bikes, building2, buildings, caps, carnivaldolls, cemetry | 30 | 30 | 38 | 34 | 30 | 162 |
2 | Churchandcapitol, lighthouse, dancers, coinsinfountain, house, loweronih35 | 30 | 30 | 36 | 37 | 30 | 163 |
3 | Lighthouse2, manfishing, monarch, ocean, parrots, paintedhouse | 30 | 30 | 37 | 34 | 30 | 161 |
4 | Plane, rapids, sailing1, sailing2, sailing3, sailing4 | 30 | 30 | 34 | 35 | 30 | 159 |
5 | Statue, stream, womanhat, studentsculpture, woman | 25 | 25 | 30 | 29 | 25 | 134 |
All distorted images in LIVE database | 145 | 145 | 175 | 169 | 145 | 779 |
Table 4
Subjective consistency between objective and subjective scores of the WABNN method on different datasets"
Dataset | RMSE | LPCC | SROCC | KROCC |
Dataset 1 | 8.674 1 | 0.948 4 | 0.940 8 | 0.780 1 |
Dataset 2 | 9.135 9 | 0.922 7 | 0.917 3 | 0.763 5 |
Dataset 3 | 9.948 6 | 0.915 9 | 0.908 8 | 0.756 2 |
Dataset 4 | 8.825 4 | 0.935 5 | 0.926 5 | 0.768 7 |
Dataset 5 | 8.936 6 | 0.949 1 | 0.935 2 | 0.778 1 |
All | 9.110 7 | 0.936 4 | 0.924 9 | 0.766 4 |
Table 5
Accuracy of the distortion type judgment of the WABNN method on different datasets %"
Dataset | WN | BLUR | JPEG | JPEG2000 | FF | All |
Dataset 1 | 96.67 | 90.00 | 97.37 | 85.29 | 86.67 | 91.36 |
Dataset 2 | 96.67 | 93.33 | 94.44 | 89.19 | 86.67 | 92.02 |
Dataset 3 | 100.00 | 90.00 | 91.89 | 88.24 | 90.00 | 91.93 |
Dataset 4 | 100.00 | 93.33 | 88.24 | 88.57 | 86.67 | 91.19 |
Dataset 5 | 96.00 | 92.00 | 96.30 | 89.66 | 88.00 | 93.13 |
All | 97.87 | 91.73 | 93.65 | 88.19 | 87.60 | 91.93 |
Table 6
Comparison of the subjective consistency of different NRIQA methods on LIVE database"
Distortion type | Method | RMSE | LPCC | SROCC | KROCC |
WN | BIQI | 6.721 4 | 0.953 8 | 0.951 0 | 0.821 9 |
DIIVINE | 5.481 5 | 0.988 0 | 0.878 2 | ||
BLIINDS-II | 6.011 2 | 0.979 9 | 0.978 3 | 0.851 1 | |
NIQE | 6.254 6 | 0.977 3 | 0.966 2 | 0.849 5 | |
BRISQUE | 0.978 6 | ||||
SSEQ | 5.928 9 | 0.980 6 | 0.978 4 | 0.859 7 | |
BHOD | 6.554 4 | 0.980 1 | 0.972 8 | 0.864 5 | |
NRSL | |||||
WABNN | |||||
BLUR | BIQI | 8.964 8 | 0.829 3 | 0.846 3 | 0.779 5 |
DIIVINE | 7.996 1 | 0.923 0 | 0.921 0 | 0.796 1 | |
BLIINDS-II | 7.6863 | 0.9381 | 0.9432 | 0.832 8 | |
NIQE | 7.056 7 | 0.952 5 | 0.934 1 | 0.828 6 | |
BRISQUE | 7.239 5 | 0.950 6 | 0.943 5 | 0.837 9 | |
SSEQ | |||||
BHOD | |||||
NRSL | 7.850 4 | 0.944 7 | 0.942 0 | 0.808 1 | |
WABNN | |||||
JPEG | BIQI | 10.144 0 | 0.901 1 | 0.891 4 | 0.783 9 |
DIIVINE | 9.5101 | 0.9210 | 0.910 0 | 0.808 5 | |
BLIINDS-II | 8.654 1 | 0.937 6 | 0.931 1 | 0.825 7 | |
NIQE | 8.298 2 | 0.941 4 | 0.938 2 | 0.821 8 | |
BRISQUE | |||||
SSEQ | 7.570 5 | 0.970 2 | |||
BHOD | 8.173 5 | 0.946 1 | 0.820 6 | ||
NRSL | 0.829 4 | ||||
WABNN | 0.942 3 | 0.934 8 | |||
JP2K | BIQI | 12.013 3 | 0.808 6 | 0.799 5 | 0.736 8 |
DIIVINE | 9.610 9 | 0.922 0 | 0.913 0 | 0.765 6 | |
BLIINDS-II | 9.505 5 | 0.934 8 | |||
NIQE | 9.502 4 | 0.937 0 | 0.917 2 | 0.781 8 | |
BRISQUE | 9.875 2 | 0.922 9 | 0.913 9 | 0.769 3 | |
SSEQ | 0.942 0 | 0.801 1 | |||
BHOD | |||||
NRSL | |||||
WABNN | 8.916 5 | 0.941 2 | 0.931 0 | 0.795 1 | |
FF | BIQI | 18.103 2 | 0.732 8 | 0.706 7 | 0.606 4 |
DIIVINE | 14.429 5 | 0.888 0 | 0.863 0 | 0.668 6 | |
BLIINDS-II | 13.505 5 | 0.895 5 | 0.865 7 | 0.684 1 | |
NIQE | 12.605 8 | 0.912 8 | 0.859 4 | 0.665 3 | |
BRISQUE | 0.914 8 | 0.886 1 | 0.721 6 | ||
SSEQ | 12.685 8 | 0.916 2 | 0.749 3 | ||
BHOD | |||||
NRSL | 11.934 8 | 0.902 9 | |||
WABNN |
Table 7
Comparison of the subjective consistency of different NRIQA methods on TID2013 database"
Distortion type | Method | RMSE | LPCC | SROCC | KROCC |
WN | BIQI | ||||
DIIVINE | 0.338 3 | 0.877 3 | 0.810 4 | 0.708 9 | |
BLIINDS-II | 0.385 7 | 0.839 5 | 0.821 5 | 0.626 7 | |
NIQE | 0.399 4 | 0.842 8 | 0.815 5 | 0.605 0 | |
BRISQUE | 0.330 5 | 0.884 1 | 0.868 8 | 0.683 3 | |
SSEQ | |||||
BHOD | 0.485 8 | 0.729 5 | 0.710 6 | 0.522 1 | |
NRSL | 0.312 7 | 0.896 7 | 0.889 1 | 0.713 3 | |
WABNN | |||||
BLUR | BIQI | 0.635 6 | 0.855 2 | 0.836 2 | 0.663 3 |
DIIVINE | 0.479 9 | 0.921 1 | 0.916 5 | 0.760 0 | |
BLIINDS-II | |||||
NIQE | 0.670 2 | 0.825 4 | 0.815 5 | 0.589 0 | |
BRISQUE | 0.483 7 | 0.919 4 | 0.911 5 | 0.749 0 | |
SSEQ | 0.531 2 | 0.901 2 | 0.893 1 | 0.720 0 | |
BHOD | 0.668 2 | 0.919 3 | 0.910 7 | 0.746 7 | |
NRSL | |||||
WABNN | |||||
JPEG | BIQI | 1.022 0 | 0.728 8 | 0.670 3 | 0.493 3 |
DIIVINE | 0.684 5 | 0.884 4 | 0.810 4 | 0.620 0 | |
BLIINDS-II | |||||
NIQE | 0.559 5 | 0.926 8 | 0.866 5 | 0.649 8 | |
BRISQUE | 0.521 2 | 0.936 1 | 0.870 8 | 0.700 0 | |
SSEQ | 0.462 2 | ||||
BHOD | 0.475 3 | 0.948 3 | 0.871 2 | 0.686 7 | |
NRSL | 0.900 5 | 0.732 3 | |||
WABNN | 0.944 6 | ||||
JP2K | BIQI | 0.761 2 | 0.893 4 | 0.822 0 | 0.631 1 |
DIIVINE | 0.924 9 | 0.877 3 | 0.700 0 | ||
BLIINDS-II | |||||
NIQE | 0.715 5 | 0.907 2 | 0.898 1 | 0.706 2 | |
BRISQUE | 0.672 3 | 0.912 8 | |||
SSEQ | 0.601 1 | 0.899 9 | 0.737 9 | ||
BHOD | 0.890 7 | 0.720 0 | |||
NRSL | 0.656 2 | 0.920 4 | 0.883 1 | 0.713 3 | |
WABNN | 0.699 6 | 0.913 6 |
Table 9
Comparison of the subjective consistency of different NRIQA methods on LIVE database (training set) and TID2013 database (test set)"
Method | WN | Blur | JPEG | JP2K | ALL |
BIQI | 0.876 8 | 0.876 6 | 0.666 5 | 0.855 9 | 0.819 0 |
DIIVINE | 0.883 9 | 0.893 9 | 0.852 4 | 0.789 5 | 0.854 9 |
BLIINDS-II | 0.723 1 | 0.583 3 | 0.566 2 | 0.611 2 | 0.621 0 |
NIQE | 0.815 5 | 0.815 5 | 0.866 5 | 0.898 1 | 0.848 9 |
BRISQUE | 0.906 7 | 0.904 5 | 0.891 7 | 0.888 8 | |
SSEQ | 0.861 6 | 0.898 6 | 0.918 3 | 0.902 3 | |
BHOD | 0.748 9 | 0.914 8 | 0.881 5 | 0.915 5 | 0.865 2 |
NRSL | 0.842 2 | 0.909 4 | 0.909 2 | 0.777 9 | 0.859 7 |
WABNN | 0.901 0 | 0.897 1 | 0.922 1 | 0.841 2 |
Table 10
Comparison of the subjective consistency of different NRIQA methods on LIVE database (test set) and TID2013 database (training set)"
Method | WN | Blur | JPEG | JP2K | ALL |
BIQI | 0.656 2 | 0.848 3 | 0.599 5 | 0.759 2 | 0.715 8 |
DIIVINE | 0.406 1 | 0.923 7 | 0.923 7 | 0.848 2 | 0.775 4 |
BLIINDS-II | 0.947 9 | 0.845 5 | 0.869 7 | 0.701 0 | 0.841 0 |
NIQE | 0.966 2 | 0.934 1 | 0.938 2 | 0.917 2 | |
BRISQUE | 0.897 6 | 0.873 4 | 0.957 0 | 0.897 4 | 0.906 4 |
SSEQ | 0.609 8 | 0.881 0 | 0.949 5 | 0.922 2 | 0.840 6 |
BHOD | 0.944 4 | 0.903 6 | 0.923 6 | 0.927 3 | |
NRSL | 0.970 1 | 0.840 8 | 0.935 5 | 0.930 0 | |
WABNN | 0.958 0 | 0.847 2 | 0.948 4 | 0.898 4 |
1 | MANAP R A, SHAO L. Non-distortion-specific no-reference image quality assessment:a survey. Information Sciences, 2015, 301 (C): 141- 160. |
2 | ZHU X, MILANFAR P. A no-reference sharpness metric sensitive to blur and noise. Proc. of International Workshop on Quality of Multimedia Experience, 2009, 64- 69. |
3 | CHEN M J, BOVIK A C. No-reference image blur assessment using multiscale gradient. Proc. of International Workshop on Quality of Multimedia Experience, 2009, 1- 11. |
4 | MARICHAL X, MA W Y, ZHANG H J. Blur determination in the compressed domain using DCT information. Proc. of the IEEE International Conference on Image Processing, 2002, 12, 386- 390. |
5 | SHAO Y, SUN F, LI H. No-reference remote sensing image quality assessment method using visual properties. Journal of Tsinghua University, 2013, 53 (4): 550- 555. |
6 | WANG Z, BOVIK A C, EVAN B L. Blind measurement of blocking artifacts in images. Proc. of the IEEE International Conference on Image Processing, 2000, 981- 984. |
7 |
SAZZAD Z M P, KAWAYOKE Y, HORITA Y. No reference image quality assessment for JP2K based on spatial features. Signal Processing Image Communication, 2008, 23 (4): 257- 268.
doi: 10.1016/j.image.2008.03.005 |
8 | HORITA Y, ARATA S, MURAI T. No-reference image quality assessment for JPEG/JP2K coding. Proc. of the IEEE Signal Processing Conference, 2004, 1301- 1304. |
9 | XIE F, PAN X, JIANG Z, et al. No-reference haze effects assessment for remote sensing images. Chinese Journal of Stereology & Image Analysis, 2015, 20 (1): 22- 27. |
10 | WANG Z, BOVIK A C. Modern image quality assessment. New York: Morgan and Claypool Publishing Company, 2006. |
11 |
MOORTHY A K, BOVIK A C. A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters, 2010, 17 (5): 513- 516.
doi: 10.1109/LSP.2010.2043888 |
12 |
LI C, BOVIK A C, WU X. Blind image quality assessment using a general regression neural network. IEEE Trans. on Neural Networks, 2011, 22 (5): 793- 799.
doi: 10.1109/TNN.2011.2120620 |
13 | MOORTHY A K, BOVIK A C. Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. on Image Processing: A Publication of the IEEE Signal Processing Society, 2011, 20(12): 3350-3364. |
14 | SAAD M A, BOVIK A C, CHARRIER C. DCT statistics model-based blind image quality assessment. Proc. of the IEEE 18th International Conference on Image Processing, 2011, 9, 3154- 3157. |
15 | SAAD M A, BOVIK A C, CHARRIER C. Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. on Image Processing: A Publication of the IEEE Signal Processing Society, 2012, 21(8): 3339-3352. |
16 |
MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a "completely blind" image quality analyzer. IEEE Signal Processing Letters, 2013, 20 (3): 209- 212.
doi: 10.1109/LSP.2012.2227726 |
17 | MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain. IEEE Trans. on Image Processing: A Publication of the IEEE Signal Processing Society, 2012, 21(12): 4695-4708. |
18 | MITTAL A, MOORTHY A K, BOVIK A C. Blind/referenceless image spatial quality evaluator. Proc. of the IEEE 45th Asilornar Conference on Signals, Systems and Computers, 2011: 723-727. |
19 |
LIU L, LIU B, HUANG H, et al. No-reference image quality assessment based on spatial and spectral entropies. Signal Processing Image Communication, 2014, 29 (8): 856- 863.
doi: 10.1016/j.image.2014.06.006 |
20 | LI Q, LIN W, FANG Y. No-reference image quality assessment based on high order derivatives. Proc. of the IEEE International Conference on Multimedia and Expo, 2016: 1-6. |
21 | LI Q, LIN W, XU J, et al. Blind image quality assessment using statistical structural and luminance features. IEEE Trans. on Multimedia, 2016, 18(12): 2457-2469. |
22 | LIU L, HUA Y, ZHAO Q, et al. Blind image quality assessment by relative gradient statistics and adaboosting neural network. Signal Processing Image Communication, 2016, 40 (C): 1- 15. |
23 | RUDERMAN D L. The statistics of natural images. Network Computation in Neural Systems, 2009, 5 (4): 517- 548. |
24 | WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment. Proc. of the 37th IEEE Asilomar Conference on Signals, Systems & Computers, 2003, 2: 1398-1402. |
25 | SRIVASTAVA A, LEE A B, SIMONCELLI E P, et al. On advances in statistical modeling of natural images. Journal of Mathematical Imaging & Vision, 2003, 18 (1): 17- 33. |
26 | SHEIKH H R, WANG Z, BOVIK A C, et al. Image and video quality assessment research at LIVE 2004. http://live.ece.utexas.edu/research/quality. |
27 | SHEIKH H R, SABIR M F, BOVIK A C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. on Image Processing, 2006, 15(11): 3440-3451. |
28 | SHARIFI K, LEON-GARCIA A. Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video. IEEE Trans. on Circuits & Systems for Video Technology, 1995, 5(1): 52-56. |
29 | ZHOU Y L, CHEN F, SUN B. Identification method of gas-liquid two-phase flow pattern based on image wavelet packet information entropy and genetic neural network. Nuclear Power Engineering, 2008, 29 (1): 115- 120. |
30 | ZHANG Z. Digital image processing and machine vision. Beijing: The Posts and Telecommunications Press, 2010. |
31 |
CAO Y, MIAO Q G, LIU J C, et al. Advance and prospects of adaboost algorithm. Acta Automatica Sinica, 2013, 39 (6): 745- 758.
doi: 10.1016/S1874-1029(13)60052-X |
32 | WU J L, ZHANG B H, WANG K. Application of Adaboostbased BP neural network for short-term wind speed forecast. Power System Technology, 2012, 36 (9): 221- 225. |
33 | LI S, XIE Y L, WANG W X. Application of AdaBoost BP neural network in prediction of railway freight volumes. Computer Engineering and Applications, 2012, 48 (6): 233- 234. |
34 |
PONOMA N, PONOMARENKO N, JIN L, et al. Image database TID2013:peculiarities, results and perspectives. Signal Processing:Image Communication, 2015, 30, 57- 77.
doi: 10.1016/j.image.2014.10.009 |
[1] | Meiyan PAN, Jun SUN, Yuhao YANG, Dasheng LI, Sudao XIE, Shengli WANG, Jianjun CHEN. Improved TQWT for marine moving target detection [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 470-481. |
[2] | Emad ELSHAZLY, Safey ABDELWAHAB, Refaat ABOUZAID, Osama ZAHRAN, Sayed ELARABY, Mohamed ELKORDY. A secure image steganography algorithm based on least significant bit and integer wavelet transform [J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 639-649. |
[3] | Zhaoyang Qiu, Pei Wang, Jun Zhu, and Bin Tang. NYFR output pulse radar signal TOA analysis using extended Fourier transform and its TOA estimation [J]. Systems Engineering and Electronics, 2017, 28(2): 212-223. |
[4] | Chao Wu, Luping Xu, Hua Zhang, and Wenbo Zhao. Code acquisition method based on wavelet transform filtering [J]. Systems Engineering and Electronics, 2015, 26(6): 1169-1176. |
[5] | Zhizhong Fu, Yanjing Yang, Chang Shu, Yuan Li, Honggang Wu, and Jin Xu. Improved single image dehazing using dark channel prior [J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 1070-1079. |
[6] | Fang Deng, Jie Chen, and Chen Chen. Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects [J]. Journal of Systems Engineering and Electronics, 2013, 24(4): 655-665. |
[7] | Qian Huaming & Ma Jichen. Research on fiber optic gyro signal de-noising based on wavelet packet soft-threshold [J]. Journal of Systems Engineering and Electronics, 2009, 20(3): 607-612. |
[8] | Shang Zhengguo, Zhao Chunhui & Wan Jian. Application of multi-resolution analysis in sonar image denoising [J]. Journal of Systems Engineering and Electronics, 2008, 19(6): 1082-1089. |
[9] | Chen Shanxue, Li Fangwei & Zhu Weile. Fast encoding algorithm for vector quantization based on subvector L2-norm [J]. Journal of Systems Engineering and Electronics, 2008, 19(3): 611-617. |
[10] | Kang Zhiwei, Liu Jing & He Yigang. Steganography based on wavelet transform and modulus function [J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 628-632. |
[11] | Wang Xuewei, Liu Songtao & Zhou Xiaodong. New algorithm for infrared small target image enhancement based on wavelet transform and human visual properties [J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 268-273. |
[12] | Xiong Chengyi, Tian Jinwen & Liu Jian. Low complexity reconfigurable architecture for the 5/3 and 9/7 discrete wavelet transform [J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 303-308. |
[13] | Li Jian, Zhou Jiliu, Wang Ybng & Zhi Yong. Synchronization of two 3-scroll hyperchaotic attractors using wavelet transform [J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 387-389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||