Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (1): 209-222.doi: 10.21629/JSEE.2019.01.20
• Reliability • Previous Articles
Yan WANG1,2(), Yimin SHI1,*(), Min WU3()
Received:
2017-08-08
Online:
2019-02-27
Published:
2019-02-27
Contact:
Yimin SHI
E-mail:wywzyf@126.com;ymshi@nwpu.edu.cn;wm6543@126.com
About author:
WANG Yan was born in 1987. She received her B.S. degree in mathematics and applied mathematics from Henan institute of Science and Technology in 2009, her M.S. degree in applied mathematics from Xi'an Polytechnic University in 2012, and now she is a Ph.D. candidate at Northwestern Polytechnical University. Her research interests include reliability theory and application, and applied probability and statistics. E-mail:Supported by:
Yan WANG, Yimin SHI, Min WU. Statistical inference for dependence competing risks model under middle censoring[J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 209-222.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Blind time and causes for patients with diabetic retinopathy"
1 | 266 | 1 |
2 | 91 | 2 |
3 | 154 | 2 |
4 | 285 | 0 |
5 | 583 | 1 |
6 | 547 | 2 |
7 | 79 | 1 |
8 | 622 | 0 |
9 | 707 | 2 |
10 | 469 | 2 |
11 | 93 | 1 |
12 | 1 313 | 2 |
13 | 805 | 1 |
14 | 344 | 1 |
15 | 790 | 2 |
16 | 125 | 2 |
17 | 777 | 2 |
18 | 306 | 1 |
19 | 415 | 1 |
20 | 307 | 2 |
21 | 637 | 2 |
22 | 577 | 2 |
23 | 178 | 1 |
24 | 517 | 2 |
25 | 272 | 0 |
26 | 1 137 | 0 |
27 | 1 484 | 1 |
28 | 315 | 1 |
29 | 287 | 2 |
30 | 1 252 | 1 |
31 | 717 | 2 |
32 | 642 | 1 |
33 | 141 | 2 |
34 | 407 | 1 |
35 | 356 | 1 |
36 | 1 653 | 0 |
37 | 427 | 2 |
38 | 699 | 1 |
39 | 36 | 2 |
40 | 667 | 1 |
41 | 588 | 2 |
42 | 471 | 0 |
43 | 126 | 1 |
44 | 350 | 2 |
45 | 350 | 1 |
46 | 663 | 0 |
47 | 567 | 2 |
48 | 966 | 0 |
49 | 203 | 0 |
50 | 84 | 1 |
51 | 392 | 1 |
52 | 1 140 | 2 |
53 | 901 | 1 |
54 | 1 247 | 0 |
55 | 448 | 2 |
56 | 904 | 2 |
57 | 276 | 1 |
58 | 520 | 1 |
59 | 485 | 2 |
60 | 248 | 2 |
61 | 503 | 1 |
62 | 423 | 2 |
63 | 285 | 2 |
64 | 315 | 2 |
65 | 727 | 2 |
66 | 210 | 2 |
67 | 409 | 2 |
68 | 584 | 1 |
69 | 355 | 1 |
70 | 1 302 | 1 |
71 | 227 | 2 |
Table 2
Artificial middle censoring data"
Case | Data | ||||||||||||
79 | (81.771 9 194.242 9) | 93 | 126 | 178 | 266 | 276 | 306 | 315 | 344 | 350 | |||
Case1 | 355 | 356 | 392 | 407 | 415 | 503 | 520 | 583 | 584 | 642 | 667 | 699 | 805 |
(218.235 7 963.491 2) | 1252 | 1 302 | 1 484 | ||||||||||
36 | 91 | 125 | 141 | 154 | 210 | 227 | 248 | 285 | 287 | 307 | 315 | ||
Case2 | (171.692 7 364.090 0) | 409 | 423 | 427 | 448 | 469 | 485 | 517 | 547 | 567 | 577 | ||
588 | 637 | 707 | 717 | 727 | 777 | (193.762 1 823.838 3) | 904 | 1 140 | 1 313 | ||||
Case0 | 203 | 272 | 285 | 471 | 622 | 663 | 966 | 1 137 | 1 247 | 1 653 |
Table 3
Estimations and 95% confidence and incredible intervals"
Estimation | |||
MLE | 0.105 2 (0.056 2, 1.606 6) | 0.306 3 (0.113 5, 1.679 1) | 0.303 9 (0.143 8, 1.824 1) |
MPA | 0.135 1 | 0.307 0 | 0.317 7 |
Bayes | 0.097 9 (0.037 6, 1.484 3) | 0.276 4 (0.142 9, 1.578 1) | 0.276 1 (0.141 6, 1.786 9) |
Table 4
MSE of estimations for parameters when $\mathit{\boldsymbol{\alpha = 1.539, \lambda _0 = 0.38, \lambda _1 = 0.369, \lambda _2 = 0.458}}$"
Estimator | |||||||||||||
MLE | 0.517 1 | 0.502 1 | 0.514 4 | 0.527 7 | 0.524 4 | 0.533 2 | 0.551 5 | 0.561 9 | 0.573 3 | ||||
2 | MPA | 0.523 4 | 0.536 7 | 0.541 8 | 0.542 1 | 0.561 1 | 0.561 9 | 0.574 1 | 0.584 0 | 0.581 2 | |||
Bayes | 0.462 6 | 0.465 8 | 0.336 4 | 0.487 4 | 0.491 8 | 0.366 1 | 0.495 1 | 0.503 8 | 0.394 6 | ||||
MLE | 0.552 9 | 0.531 1 | 0.563 9 | 0.578 9 | 0.566 9 | 0.588 4 | 0.605 8 | 0.597 4 | 0.606 6 | ||||
30 | 4 | MPA | 0.562 5 | 0.550 4 | 0.570 3 | 0.591 4 | 0.576 8 | 0.597 7 | 0.615 2 | 0.612 7 | 0.622 9 | ||
Bayes | 0.471 6 | 0.497 8 | 0.403 1 | 0.508 2 | 0.509 2 | 0.446 1 | 0.519 1 | 0.516 9 | 0.454 4 | ||||
MLE | 0.602 9 | 0.596 8 | 0.608 1 | 0.643 1 | 0.636 3 | 0.642 2 | 0.666 1 | 0.655 8 | 0.660 2 | ||||
6 | MPA | 0.658 7 | 0.677 1 | 0.674 6 | 0.687 2 | 0.704 6 | 0.700 3 | 0.701 0 | 0.712 4 | 0.714 2 | |||
Bayes | 0.577 4 | 0.513 9 | 0.462 6 | 0.607 3 | 0.527 9 | 0.557 4 | 0.619 4 | 0.542 4 | 0.563 0 | ||||
MLE | 0.477 0 | 0.471 3 | 0.505 3 | 0.507 4 | 0.481 0 | 0.516 7 | 0.517 7 | 0.505 1 | 0.526 8 | ||||
2 | MPA | 0.502 6 | 0.494 6 | 0.510 3 | 0.518 9 | 0.500 6 | 0.525 3 | 0.523 4 | 0.525 6 | 0.534 2 | |||
Bayes | 0.420 8 | 0.417 8 | 0.316 5 | 0.434 9 | 0.431 6 | 0.338 2 | 0.436 8 | 0.458 2 | 0.360 6 | ||||
MLE | 0.510 3 | 0.519 7 | 0.521 1 | 0.526 9 | 0.537 3 | 0.534 5 | 0.532 9 | 0.542 9 | 0.554 4 | ||||
40 | 4 | MPA | 0.523 1 | 0.540 3 | 0.551 2 | 0.564 3 | 0.553 0 | 0.567 2 | 0.604 6 | 0.606 5 | 0.616 5 | ||
Bayes | 0.435 7 | 0.457 9 | 0.390 8 | 0.458 2 | 0.468 7 | 0.415 1 | 0.476 4 | 0.495 6 | 0.434 9 | ||||
MLE | 0.523 6 | 0.521 0 | 0.559 8 | 0.551 7 | 0.541 5 | 0.572 7 | 0.591 4 | 0.582 9 | 0.594 6 | ||||
6 | MPA | 0.636 5 | 0.610 3 | 0.651 2 | 0.642 5 | 0.662 0 | 0.677 2 | 0.697 2 | 0.681 3 | 0.687 5 | |||
Bayes | 0.476 1 | 0.488 5 | 0.407 7 | 0.504 7 | 0.494 6 | 0.463 7 | 0.518 7 | 0.507 4 | 0.514 0 | ||||
MLE | 0.427 6 | 0.455 4 | 0.458 2 | 0.442 9 | 0.464 3 | 0.478 4 | 0.469 3 | 0.477 3 | 0.483 8 | ||||
2 | MPA | 0.445 5 | 0.463 4 | 0.470 2 | 0.497 3 | 0.487 7 | 0.498 1 | 0.501 7 | 0.505 2 | 0.508 2 | |||
Bayes | 0.368 4 | 0.352 8 | 0.308 3 | 0.378 0 | 0.379 7 | 0.315 6 | 0.388 8 | 0.397 7 | 0.322 5 | ||||
MLE | 0.434 7 | 0.469 6 | 0.465 1 | 0.454 6 | 0.488 8 | 0.483 9 | 0.464 2 | 0.494 1 | 0.499 2 | ||||
50 | 4 | MPA | 0.489 6 | 0.479 3 | 0.501 3 | 0.505 3 | 0.494 5 | 0.509 3 | 0.519 6 | 0.522 7 | 0.529 1 | ||
Bayes | 0.385 1 | 0.380 1 | 0.325 7 | 0.399 1 | 0.393 3 | 0.358 3 | 0.409 1 | 0.404 9 | 0.415 3 | ||||
MLE | 0.481 4 | 0.497 7 | 0.515 3 | 0.505 9 | 0.516 8 | 0.532 2 | 0.516 4 | 0.519 2 | 0.547 5 | ||||
6 | MPA | 0.507 4 | 0.501 5 | 0.530 5 | 0.531 5 | 0.536 9 | 0.543 9 | 0.552 3 | 0.559 2 | 0.559 7 | |||
Bayes | 0.409 9 | 0.410 5 | 0.351 1 | 0.427 3 | 0.444 5 | 0.374 0 | 0.456 3 | 0.461 9 | 0.386 7 |
Table 5
MSE of estimations for parameters when $\mathit{\boldsymbol{\alpha = 1.539, \lambda _0 = 0.52, \lambda _1 = 0.369, \lambda _2 = 0.458}}$"
Estimator | |||||||||||||
MLE | 0.412 6 | 0.420 6 | 0.426 7 | 0.434 6 | 0.438 7 | 0.455 6 | 0.461 8 | 0.451 3 | 0.478 7 | ||||
2 | MPA | 0.468 2 | 0.468 3 | 0.473 0 | 0.483 7 | 0.471 8 | 0.497 2 | 0.492 9 | 0.485 0 | 0.505 6 | |||
Bayes | 0.307 2 | 0.350 1 | 0.274 4 | 0.324 1 | 0.371 8 | 0.298 6 | 0.388 6 | 0.412 8 | 0.309 0 | ||||
MLE | 0.428 2 | 0.462 2 | 0.476 8 | 0.469 2 | 0.480 8 | 0.489 6 | 0.474 4 | 0.495 7 | 0.499 6 | ||||
30 | 4 | MPA | 0.494 7 | 0.506 6 | 0.524 6 | 0.512 6 | 0.520 9 | 0.567 1 | 0.532 3 | 0.589 8 | 0.585 3 | ||
Bayes | 0.312 5 | 0.409 3 | 0.288 6 | 0.320 6 | 0.423 6 | 0.308 3 | 0.334 6 | 0.435 8 | 0.310 2 | ||||
MLE | 0.458 7 | 0.503 4 | 0.525 3 | 0.547 4 | 0.526 7 | 0.504 6 | 0.490 7 | 0.540 1 | 0.529 5 | ||||
6 | MPA | 0.539 9 | 0.524 6 | 0.551 1 | 0.560 8 | 0.538 9 | 0.589 2 | 0.576 8 | 0.559 7 | 0.592 7 | |||
Bayes | 0.325 2 | 0.416 4 | 0.302 1 | 0.346 8 | 0.438 2 | 0.320 4 | 0.373 6 | 0.458 6 | 0.340 6 | ||||
MLE | 0.401 9 | 0.387 1 | 0.356 5 | 0.403 1 | 0.390 9 | 0.412 8 | 0.434 7 | 0.402 8 | 0.431 1 | ||||
2 | MPA | 0.427 7 | 0.414 2 | 0.416 0 | 0.437 5 | 0.438 4 | 0.434 4 | 0.467 8 | 0.441 0 | 0.458 6 | |||
Bayes | 0.222 1 | 0.291 9 | 0.215 5 | 0.254 1 | 0.334 9 | 0.249 8 | 0.264 7 | 0.355 8 | 0.261 1 | ||||
MLE | 0.428 9 | 0.392 5 | 0.403 7 | 0.435 9 | 0.414 8 | 0.427 4 | 0.463 4 | 0.427 8 | 0.458 9 | ||||
40 | 4 | MPA | 0.447 6 | 0.456 8 | 0.445 7 | 0.469 9 | 0.477 5 | 0.480 9 | 0.483 4 | 0.501 6 | 0.510 6 | ||
Bayes | 0.230 1 | 0.331 1 | 0.239 8 | 0.270 3 | 0.341 6 | 0.265 8 | 0.306 7 | 0.351 3 | 0.291 5 | ||||
MLE | 0.447 0 | 0.417 0 | 0.438 8 | 0.456 5 | 0.437 1 | 0.447 2 | 0.487 4 | 0.442 5 | 0.474 9 | ||||
6 | MPA | 0.453 2 | 0.476 7 | 0.467 9 | 0.475 5 | 0.494 4 | 0.488 2 | 0.496 9 | 0.515 9 | 0.520 1 | |||
Bayes | 0.302 1 | 0.378 7 | 0.296 2 | 0.293 1 | 0.381 8 | 0.299 8 | 0.323 0 | 0.397 9 | 0.303 9 | ||||
MLE | 0.370 1 | 0.333 7 | 0.302 2 | 0.382 1 | 0.349 6 | 0.310 9 | 0.393 1 | 0.367 5 | 0.321 0 | ||||
2 | MPA | 0.416 0 | 0.382 8 | 0.382 2 | 0.424 8 | 0.383 9 | 0.402 4 | 0.430 6 | 0.427 8 | 0.410 3 | |||
Bayes | 0.152 0 | 0.249 7 | 0.190 3 | 0.163 1 | 0.272 9 | 0.202 9 | 0.177 1 | 0.283 1 | 0.223 1 | ||||
MLE | 0.383 9 | 0.357 7 | 0.323 2 | 0.405 1 | 0.375 6 | 0.333 2 | 0.417 9 | 0.390 7 | 0.348 5 | ||||
50 | 4 | MPA | 0.424 9 | 0.414 5 | 0.418 7 | 0.433 9 | 0.426 0 | 0.430 2 | 0.455 8 | 0.443 7 | 0.453 8 | ||
Bayes | 0.163 4 | 0.301 9 | 0.236 9 | 0.173 6 | 0.311 0 | 0.259 8 | 0.177 4 | 0.311 5 | 0.266 1 | ||||
MLE | 0.391 3 | 0.360 7 | 0.343 2 | 0.412 0 | 0.398 4 | 0.349 4 | 0.423 3 | 0.402 1 | 0.352 6 | ||||
6 | MPA | 0.431 9 | 0.424 7 | 0.428 0 | 0.456 8 | 0.444 1 | 0.463 2 | 0.462 4 | 0.502 5 | 0.508 4 | |||
Bayes | 0.177 3 | 0.332 1 | 0.259 3 | 0.180 3 | 0.342 0 | 0.275 7 | 0.183 1 | 0.358 2 | 0.278 5 |
Table 6
MSE of estimations for parameters when $\mathit{\boldsymbol{\alpha = 1.539, \lambda _0 = 0.75, \lambda _1 = 0.369, \lambda _2 = 0.458}}$"
Estimator | |||||||||||||
MLE | 0.273 7 | 0.289 7 | 0.266 6 | 0.323 5 | 0.310 2 | 0.270 2 | 0.339 9 | 0.323 5 | 0.308 7 | ||||
2 | MPA | 0.293 0 | 0.299 7 | 0.278 5 | 0.334 5 | 0.332 6 | 0.280 9 | 0.356 4 | 0.378 0 | 0.282 8 | |||
Bayes | 0.030 8 | 0.217 2 | 0.165 3 | 0.032 6 | 0.223 3 | 0.166 6 | 0.032 7 | 0.227 8 | 0.167 1 | ||||
MLE | 0.316 9 | 0.318 1 | 0.277 3 | 0.324 2 | 0.329 6 | 0.290 1 | 0.379 4 | 0.336 6 | 0.318 4 | ||||
30 | 4 | MPA | 0.319 3 | 0.331 3 | 0.336 2 | 0.347 3 | 0.345 2 | 0.341 6 | 0.364 0 | 0.396 9 | 0.341 6 | ||
Bayes | 0.034 1 | 0.226 9 | 0.192 3 | 0.063 7 | 0.235 4 | 0.202 2 | 0.086 9 | 0.246 9 | 0.205 3 | ||||
MLE | 0.327 9 | 0.336 8 | 0.284 5 | 0.346 7 | 0.370 4 | 0.300 3 | 0.374 6 | 0.342 2 | 0.322 8 | ||||
6 | MPA | 0.321 6 | 0.356 7 | 0.359 6 | 0.350 9 | 0.365 0 | 0.360 9 | 0.378 6 | 0.376 5 | 0.368 9 | |||
Bayes | 0.076 4 | 0.350 2 | 0.293 9 | 0.081 0 | 0.362 4 | 0.295 3 | 0.103 3 | 0.373 1 | 0.303 1 | ||||
MLE | 0.133 8 | 0.207 6 | 0.193 2 | 0.138 6 | 0.242 8 | 0.201 0 | 0.149 6 | 0.243 1 | 0.210 4 | ||||
2 | MPA | 0.138 2 | 0.258 0 | 0.258 4 | 0.166 0 | 0.260 5 | 0.271 4 | 0.162 4 | 0.274 3 | 0.293 1 | |||
Bayes | 0.021 5 | 0.152 6 | 0.126 9 | 0.024 1 | 0.173 5 | 0.130 3 | 0.025 4 | 0.174 6 | 0.147 8 | ||||
MLE | 0.148 4 | 0.230 5 | 0.202 2 | 0.159 1 | 0.254 9 | 0.205 6 | 0.165 1 | 0.258 3 | 0.220 1 | ||||
40 | 4 | MPA | 0.154 6 | 0.267 9 | 0.274 1 | 0.170 1 | 0.283 4 | 0.298 1 | 0.187 4 | 0.319 4 | 0.320 9 | ||
Bayes | 0.031 0 | 0.207 8 | 0.162 3 | 0.041 6 | 0.249 9 | 0.176 9 | 0.091 6 | 0.251 0 | 0.181 5 | ||||
MLE | 0.151 2 | 0.242 6 | 0.220 4 | 0.164 6 | 0.267 5 | 0.220 8 | 0.174 6 | 0.279 8 | 0.224 6 | ||||
6 | MPA | 0.169 7 | 0.280 1 | 0.277 6 | 0.170 4 | 0.293 3 | 0.304 2 | 0.191 4 | 0.329 2 | 0.322 8 | |||
Bayes | 0.054 0 | 0.252 3 | 0.203 9 | 0.078 3 | 0.258 6 | 0.205 2 | 0.099 4 | 0.269 7 | 0.209 1 | ||||
MLE | 0.098 1 | 0.153 9 | 0.130 9 | 0.102 1 | 0.175 2 | 0.159 3 | 0.107 8 | 0.186 5 | 0.175 4 | ||||
2 | MPA | 0.124 6 | 0.166 0 | 0.228 2 | 0.132 9 | 0.178 7 | 0.233 5 | 0.143 2 | 0.194 5 | 0.241 0 | |||
Bayes | 0.017 4 | 0.126 0 | 0.109 0 | 0.017 5 | 0.136 3 | 0.113 8 | 0.018 1 | 0.156 8 | 0.116 9 | ||||
MLE | 0.106 4 | 0.183 4 | 0.157 9 | 0.127 6 | 0.194 5 | 0.160 9 | 0.137 7 | 0.215 0 | 0.182 4 | ||||
50 | 4 | MPA | 0.134 6 | 0.243 9 | 0.250 1 | 0.054 3 | 0.255 8 | 0.261 1 | 0.054 4 | 0.269 0 | 0.279 0 | ||
Bayes | 0.018 0 | 0.172 1 | 0.154 6 | 0.018 1 | 0.175 3 | 0.140 8 | 0.018 6 | 0.178 1 | 0.175 8 | ||||
MLE | 0.127 8 | 0.200 8 | 0.177 1 | 0.139 6 | 0.225 1 | 0.190 6 | 0.140 6 | 0.225 7 | 0.233 0 | ||||
6 | MPA | 0.147 1 | 0.252 4 | 0.262 5 | 0.158 2 | 0.283 8 | 0.283 7 | 0.178 3 | 0.395 6 | 0.295 4 | |||
Bayes | 0.022 7 | 0.205 2 | 0.176 0 | 0.023 3 | 0.207 3 | 0.176 4 | 0.024 1 | 0.207 5 | 0.175 3 |
Table 7
Coverage percentages (%) of parameters when $\mathit{\boldsymbol{\alpha = 1.539, \lambda _0 = 0.38, \lambda _1 = 0.369, \lambda _2 = 0.458}}$"
Estimator | |||||||||||||
30 | 2 | ACI | 0.605 0 | 0.609 0 | 0.675 0 | 0.585 0 | 0.600 0 | 0.628 0 | 0.577 0 | 0.594 0 | 0.626 0 | ||
AL | 2.222 5 | 2.334 0 | 2.216 2 | 2.456 6 | 2.519 9 | 2.758 8 | 2.881 7 | 3.120 6 | 2.975 3 | ||||
HPD | 0.679 0 | 0.716 0 | 0.854 0 | 0.664 0 | 0.711 0 | 0.850 0 | 0.640 0 | 0.709 0 | 0.842 0 | ||||
HL | 1.914 5 | 1.972 6 | 1.960 3 | 2.197 1 | 2.248 7 | 2.304 5 | 2.462 3 | 2.514 5 | 2.631 5 | ||||
4 | ACI | 0.590 0 | 0.594 0 | 0.660 0 | 0.581 0 | 0.590 0 | 0.623 0 | 0.573 0 | 0.585 0 | 0.614 0 | |||
AL | 2.647 4 | 2.597 7 | 2.495 9 | 2.873 3 | 2.797 8 | 2.971 3 | 3.149 3 | 3.329 9 | 3.527 8 | ||||
HPD | 0.663 0 | 0.705 0 | 0.851 0 | 0.651 0 | 0.698 0 | 0.849 0 | 0.649 0 | 0.690 0 | 0.840 0 | ||||
HL | 2.462 1 | 2.339 1 | 2.361 3 | 2.784 0 | 2.895 9 | 2.876 1 | 2.978 0 | 3.055 1 | 2.996 8 | ||||
6 | ACI | 0.581 0 | 0.588 0 | 0.639 0 | 0.578 0 | 0.584 0 | 0.621 0 | 0.561 0 | 0.579 0 | 0.610 0 | |||
AL | 2.848 6 | 3.132 1 | 3.151 9 | 2.943 1 | 3.751 6 | 4.200 6 | 3.547 7 | 4.121 7 | 4.798 9 | ||||
HPD | 0.649 0 | 0.698 0 | 0.841 0 | 0.629 0 | 0.668 0 | 0.834 0 | 0.627 0 | 0.659 0 | 0.829 0 | ||||
HL | 2.693 7 | 2.616 9 | 2.501 9 | 2.810 3 | 2.959 1 | 2.991 1 | 3.187 9 | 3.392 2 | 3.534 2 | ||||
40 | 2 | ACI | 0.672 0 | 0.684 0 | 0.729 0 | 0.670 0 | 0.681 0 | 0.726 0 | 0.667 0 | 0.671 0 | 0.721 0 | ||
AL | 1.917 3 | 2.004 1 | 2.015 3 | 2.033 3 | 2.275 3 | 2.235 5 | 2.270 8 | 2.413 5 | 2.620 2 | ||||
HPD | 0.772 0 | 0.771 0 | 0.857 0 | 0.763 0 | 0.768 0 | 0.847 0 | 0.757 0 | 0.764 0 | 0.841 0 | ||||
HL | 1.702 8 | 1.719 2 | 1.949 1 | 1.912 3 | 1.916 6 | 2.164 5 | 2.151 2 | 2.100 4 | 2.344 4 | ||||
4 | ACI | 0.666 0 | 0.679 0 | 0.719 0 | 0.656 0 | 0.675 0 | 0.714 0 | 0.647 0 | 0.672 0 | 0.708 0 | |||
AL | 2.124 6 | 2.261 9 | 2.250 1 | 2.476 3 | 2.699 6 | 2.880 6 | 2.916 7 | 2.976 7 | 3.160 9 | ||||
HPD | 0.769 0 | 0.765 0 | 0.848 0 | 0.757 0 | 0.758 0 | 0.844 0 | 0.754 0 | 0.752 0 | 0.838 0 | ||||
HL | 1.964 4 | 2.058 2 | 2.189 2 | 2.156 0 | 2.336 5 | 2.453 3 | 2.395 8 | 2.530 8 | 2.750 4 | ||||
6 | ACI | 0.656 0 | 0.672 0 | 0.684 0 | 0.651 0 | 0.670 0 | 0.683 0 | 0.648 0 | 0.667 0 | 0.672 0 | |||
AL | 2.450 1 | 2.940 3 | 2.919 5 | 2.896 4 | 3.545 5 | 3.553 3 | 3.339 5 | 3.730 6 | 4.184 7 | ||||
HPD | 0.766 0 | 0.761 0 | 0.843 0 | 0.754 0 | 0.752 0 | 0.840 0 | 0.750 0 | 0.739 0 | 0.835 0 | ||||
HL | 2.115 5 | 2.342 6 | 2.459 5 | 2.319 5 | 2.590 1 | 2.682 6 | 2.816 3 | 3.013 0 | 3.161 0 | ||||
50 | 2 | ACI | 0.691 0 | 0.731 0 | 0.772 0 | 0.686 0 | 0.728 0 | 0.768 0 | 0.683 0 | 0.725 0 | 0.766 0 | ||
AL | 1.654 2 | 1.797 7 | 1.677 4 | 1.912 1 | 2.055 7 | 2.015 0 | 2.120 2 | 2.292 8 | 2.311 6 | ||||
HPD | 0.842 0 | 0.866 0 | 0.915 0 | 0.837 0 | 0.862 0 | 0.909 0 | 0.835 0 | 0.854 0 | 0.903 0 | ||||
HL | 1.611 1 | 1.549 1 | 1.603 0 | 1.692 2 | 1.697 6 | 1.732 3 | 1.751 6 | 1.894 2 | 1.900 4 | ||||
4 | ACI | 0.674 0 | 0.729 0 | 0.773 0 | 0.673 0 | 0.727 0 | 0.764 0 | 0.669 0 | 0.724 0 | 0.763 0 | |||
AL | 1.865 5 | 1.984 4 | 1.891 0 | 2.009 8 | 2.223 6 | 2.498 9 | 2.313 7 | 2.861 7 | 3.021 4 | ||||
HPD | 0.819 0 | 0.853 0 | 0.910 0 | 0.815 0 | 0.849 0 | 0.905 0 | 0.811 0 | 0.828 0 | 0.894 0 | ||||
HL | 1.637 8 | 1.599 0 | 1.680 3 | 1.763 1 | 1.714 8 | 1.817 4 | 1.839 3 | 1.913 8 | 1.997 9 | ||||
6 | ACI | 0.655 0 | 0.729 0 | 0.771 0 | 0.647 0 | 0.723 0 | 0.762 0 | 0.621 0 | 0.724 0 | 0.759 0 | |||
AL | 1.901 2 | 2.091 2 | 2.146 8 | 2.223 6 | 2.539 4 | 2.588 9 | 2.993 2 | 3.674 2 | 3.282 1 | ||||
HPD | 0.810 0 | 0.809 0 | 0.875 0 | 0.797 0 | 0.794 0 | 0.867 0 | 0.784 0 | 0.791 0 | 0.864 0 | ||||
HL | 1.735 5 | 1.620 1 | 1.731 4 | 1.811 1 | 1.998 2 | 1.981 2 | 1.922 6 | 2.051 6 | 2.196 2 |
Table 8
Coverage percentages (%) of parameters when $\mathit{\boldsymbol{\alpha = 1.539, \lambda _0 = 0.52, \lambda _1 = 0.369, \lambda _2 = 0.458}}$"
Estimator | |||||||||||||
30 | 2 | ACI | 0.795 0 | 0.845 0 | 0.835 0 | 0.785 0 | 0.835 0 | 0.828 0 | 0.784 0 | 0.829 0 | 0.824 0 | ||
AL | 1.832 5 | 1.856 1 | 1.905 3 | 1.909 4 | 2.014 6 | 2.035 9 | 2.013 5 | 2.114 3 | 2.215 2 | ||||
HPD | 0.845 0 | 0.859 0 | 0.865 0 | 0.833 0 | 0.851 0 | 0.853 0 | 0.821 0 | 0.842 0 | 0.845 0 | ||||
HL | 1.704 4 | 1.795 9 | 1.707 5 | 1.802 1 | 1.965 7 | 1.878 8 | 1.973 4 | 1.980 4 | 1.946 0 | ||||
4 | ACI | 0.781 0 | 0.831 0 | 0.828 0 | 0.776 0 | 0.823 0 | 0.819 0 | 0.770 0 | 0.812 0 | 0.813 0 | |||
AL | 1.994 9 | 2.050 8 | 2.163 5 | 2.175 8 | 2.349 4 | 2.457 5 | 2.152 3 | 2.527 1 | 2.649 0 | ||||
HPD | 0.826 0 | 0.833 0 | 0.837 0 | 0.822 0 | 0.826 0 | 0.835 0 | 0.818 0 | 0.830 0 | 0.825 0 | ||||
HL | 1.902 6 | 1.853 0 | 1.857 5 | 2.083 4 | 2.036 6 | 2.147 6 | 2.156 0 | 2.281 4 | 2.336 1 | ||||
6 | ACI | 0.772 0 | 0.811 0 | 0.820 0 | 0.761 0 | 0.805 0 | 0.806 0 | 0.754 0 | 0.794 0 | 0.795 0 | |||
AL | 2.333 0 | 2.413 4 | 2.661 7 | 2.411 7 | 2.510 4 | 2.882 1 | 2.537 4 | 2.796 5 | 2.951 8 | ||||
HPD | 0.821 0 | 0.822 0 | 0.826 0 | 0.814 0 | 0.819 0 | 0.816 0 | 0.813 0 | 0.816 0 | 0.813 0 | ||||
HL | 2.117 4 | 2.392 5 | 2.357 3 | 2.398 0 | 2.471 7 | 2.496 0 | 2.589 1 | 2.610 0 | 2.890 5 | ||||
40 | 2 | ACI | 0.849 0 | 0.858 0 | 0.908 0 | 0.835 0 | 0.844 0 | 0.897 0 | 0.834 0 | 0.835 0 | 0.893 0 | ||
AL | 1.733 5 | 1.871 7 | 1.811 9 | 1.954 6 | 1.951 4 | 1.925 9 | 2.053 8 | 2.107 7 | 2.138 8 | ||||
HPD | 0.872 0 | 0.867 0 | 0.913 0 | 0.869 0 | 0.861 0 | 0.910 0 | 0.863 0 | 0.856 0 | 0.904 0 | ||||
HL | 1.597 6 | 1.647 5 | 1.660 4 | 1.641 0 | 1.791 8 | 1.844 5 | 1.726 7 | 1.926 5 | 1.943 1 | ||||
4 | ACI | 0.831 0 | 0.832 0 | 0.879 0 | 0.825 0 | 0.823 0 | 0.868 0 | 0.819 0 | 0.812 0 | 0.860 0 | |||
AL | 1.940 5 | 1.909 9 | 2.144 8 | 2.124 0 | 2.062 7 | 2.312 8 | 2.202 0 | 2.591 3 | 2.203'6 | ||||
HPD | 0.864 0 | 0.856 0 | 0.904 0 | 0.856 0 | 0.851 0 | 0.898 0 | 0.853 0 | 0.848 0 | 0.890 0 | ||||
HL | 1.947 8 | 2.053 1 | 1.923 7 | 2.049 5 | 2.150 5 | 2.151 5 | 2.135 7 | 2.294 8 | 2.205 6 | ||||
6 | ACI | 0.823 0 | 0.828 0 | 0.865 0 | 0.819 0 | 0.819 0 | 0.839 0 | 0.815 0 | 0.804 0 | 0.832 0 | |||
AL | 2.191 6 | 2.389 2 | 2.358 0 | 2.478 4 | 2.492 4 | 2.492 4 | 2.574 5 | 2.627 7 | 2.891 3 | ||||
HPD | 0.863 0 | 0.846 0 | 0.865 0 | 0.859 0 | 0.841 0 | 0.882 0 | 0.852 0 | 0.838 0 | 0.876 0 | ||||
HL | 2.136 6 | 2.253 0 | 2.335 2 | 2.301 2 | 2.392 7 | 2.421 1 | 2.462 2 | 2.574 0 | 2.766 3 | ||||
50 | 2 | ACI | 0.881 0 | 0.864 0 | 0.915 0 | 0.873 0 | 0.852 0 | 0.904 0 | 0.853 0 | 0.851 0 | 0.900 0 | ||
AL | 1.752 0 | 1.750 9 | 1.725 3 | 1.831 8 | 1.877 7 | 1.915 4 | 1.932 3 | 1.928 5 | 2.045 5 | ||||
HPD | 0.920 0 | 0.885 0 | 0.931 0 | 0.918 0 | 0.882 0 | 0.929 0 | 0.917 0 | 0.872 0 | 0.926 0 | ||||
HL | 1.583 6 | 1.507 7 | 1.589 9 | 1.628 1 | 1.618 2 | 1.764 8 | 1.810 5 | 1.811 2 | 1.903 7 | ||||
4 | ACI | 0.865 0 | 0.854 0 | 0.893 0 | 0.857 0 | 0.841 0 | 0.880 0 | 0.846 0 | 0.847 0 | 0.873 0 | |||
AL | 1.932 1 | 1.805 7 | 1.955 6 | 1.919 1 | 2.015 0 | 2.052 5 | 2.121 6 | 2.328 5 | 2.149 5 | ||||
HPD | 0.916 0 | 0.866 0 | 0.920 0 | 0.913 0 | 0.865 0 | 0.918 0 | 0.911 0 | 0.864 0 | 0.917 0 | ||||
HL | 1.585 1 | 1.611 8 | 1.612 9 | 1.642 5 | 1.767 0 | 1.808 0 | 1.819 7 | 1.855 2 | 1.929 5 | ||||
6 | ACI | 0.846 0 | 0.842 0 | 0.876 0 | 0.846 0 | 0.824 0 | 0.871 0 | 0.834 0 | 0.811 0 | 0.868 0 | |||
AL | 2.101 9 | 2.116 1 | 2.130 3 | 2.286 5 | 2.377 7 | 2.725 4 | 2.535 3 | 2.333 6 | 2.289 2 | ||||
HPD | 0.914 0 | 0.856 0 | 0.922 0 | 0.911 0 | 0.852 0 | 0.915 0 | 0.905 0 | 0.857 0 | 0.909 0 | ||||
HL | 1.616 9 | 1.645 9 | 1.624 7 | 1.713 1 | 1.806 8 | 1.876 6 | 1.922 5 | 1.989 6 | 1.931 4 |
Table 9
Coverage percentages (%) of parameters when $\mathit{\boldsymbol{\alpha = 1.539, \lambda _0 = 0.75, \lambda _1 = 0.369, \lambda _2 = 0.458}}$"
Estimator | |||||||||||||
30 | 2 | ACI | 0.932 0 | 0.868 0 | 0.933 0 | 0.929 0 | 0.865 0 | 0.931 0 | 0.926 0 | 0.862 0 | 0.928 0 | ||
AL | 1.841 7 | 1.851 5 | 1.855 3 | 1.912 7 | 1.932 3 | 2.023 9 | 2.041 7 | 2.178 6 | 2.145 8 | ||||
HPD | 0.930 0 | 0.925 0 | 0.948 0 | 0.926 0 | 0.920 0 | 0.941 0 | 0.923 0 | 0.915 0 | 0.936 0 | ||||
HL | 1.647 7 | 1.731 3 | 1.784 2 | 1.817 3 | 1.933 8 | 1.895 7 | 1.912 4 | 2.034 1 | 2.124 1 | ||||
4 | ACI | 0.923 0 | 0.861 0 | 0.913 0 | 0.917 0 | 0.857 0 | 0.911 0 | 0.909 0 | 0.847 0 | 0.908 0 | |||
AL | 1.811 7 | 1.933 5 | 1.996 8 | 1.955 8 | 2.053 5 | 2.157 3 | 2.131 7 | 2.103 5 | 2.333 0 | ||||
HPD | 0.925 0 | 0.901 0 | 0.936 0 | 0.919 0 | 0.899 0 | 0.934 0 | 0.918 0 | 0.896 0 | 0.925 0 | ||||
HL | 1.768 4 | 1.956 9 | 1.849 1 | 1.873 3 | 2.094 5 | 1.947 8 | 2.132 2 | 2.165 4 | 2.184 5 | ||||
6 | ACI | 0.905 0 | 0.854 0 | 0.905 0 | 0.899 0 | 0.841 0 | 0.894 0 | 0.891 0 | 0.836 0 | 0.891 0 | |||
AL | 1.963 5 | 2.065 9 | 2.121 2 | 2.049 1 | 2.187 8 | 2.325 4 | 2.324 1 | 2.262 7 | 2.407 5 | ||||
HPD | 0.921 0 | 0.890 0 | 0.925 0 | 0.913 0 | 0.889 0 | 0.923 0 | 0.912 0 | 0.887 0 | 0.918 0 | ||||
HL | 1.825 4 | 2.088 3 | 1.937 9 | 1.978 9 | 2.297 1 | 2.161 2 | 2.284 5 | 2.419 8 | 2.392 5 | ||||
40 | 2 | ACI | 0.949 0 | 0.891 0 | 0.938 0 | 0.938 0 | 0.882 0 | 0.930 0 | 0.933 0 | 0.868 0 | 0.925 0 | ||
AL | 1.625 5 | 1.638 3 | 1.532 3 | 1.725 6 | 1.812 7 | 1.759 8 | 1.921 7 | 1.923 5 | 2.025 3 | ||||
HPD | 0.951 0 | 0.931 0 | 0.951 0 | 0.949 0 | 0.927 0 | 0.945 0 | 0.945 0 | 0.923 0 | 0.940 0 | ||||
HL | 1.617 8 | 1.603 1 | 1.573 7 | 1.706 1 | 1.742 3 | 1.640 7 | 1.713 7 | 1.799 3 | 1.736 2 | ||||
4 | ACI | 0.935 0 | 0.875 0 | 0.920 0 | 0.930 0 | 0.871 0 | 0.918 0 | 0.925 0 | 0.859 0 | 0.916 0 | |||
AL | 1.655 6 | 1.784 2 | 1.595 6 | 1.796 4 | 1.999 4 | 1.849 3 | 2.076 9 | 2.149 8 | 2.178 5 | ||||
HPD | 0.945 0 | 0.915 0 | 0.939 0 | 0.941 0 | 0.911 0 | 0.934 0 | 0.937 0 | 0.907 0 | 0.930 0 | ||||
HL | 1.622 7 | 1.625 9 | 1.586 0 | 1.712 2 | 1.746 5 | 1.696 0 | 1.758 4 | 1.821 3 | 1.788 4 | ||||
6 | ACI | 0.933 0 | 0.866 0 | 0.910 0 | 0.928 0 | 0.859 0 | 0.906 0 | 0.927 0 | 0.854 0 | 0.900 0 | |||
AL | 1.750 9 | 1.954 7 | 1.690 4 | 1.804 8 | 2.047 6 | 1.907 9 | 2.172 8 | 2.198 6 | 2.275 9 | ||||
HPD | 0.940 0 | 0.913 0 | 0.929 0 | 0.937 0 | 0.905 0 | 0.927 0 | 0.934 0 | 0.900 0 | 0.920 0 | ||||
HL | 1.690 4 | 1.712 4 | 1.642 1 | 1.736 1 | 1.755 1 | 1.746 6 | 1.838 3 | 1.875 0 | 1.814 2 | ||||
50 | 2 | ACI | 0.952 0 | 0.901 0 | 0.943 0 | 0.947 0 | 0.891 0 | 0.941 0 | 0.944 0 | 0.887 0 | 0.939 0 | ||
AL | 1.584 6 | 1.639 0 | 1.576 6 | 1.598 2 | 1.604 7 | 1.867 4 | 1.714 5 | 1.904 7 | 1.916 6 | ||||
HPD | 0.974 0 | 0.937 0 | 0.977 0 | 0.962 0 | 0.928 0 | 0.974 0 | 0.961 0 | 0.919 0 | 0.965 0 | ||||
HL | 1.297 7 | 1.331 3 | 1.184 2 | 1.317 3 | 1.333 8 | 1.275 7 | 1.404 3 | 1.445 2 | 1.326 5 | ||||
4 | ACI | 0.944 0 | 0.890 0 | 0.923 0 | 0.941 0 | 0.882 0 | 0.921 0 | 0.938 0 | 0.877 0 | 0.921 0 | |||
AL | 1.667 2 | 1.706 0 | 1.649 5 | 1.684 1 | 1.852 6 | 1.560 9 | 1.748 6 | 1.950 1 | 1.923 5 | ||||
HPD | 0.958 0 | 0.929 0 | 0.971 0 | 0.956 0 | 0.917 0 | 0.969 0 | 0.953 0 | 0.920 0 | 0.965 0 | ||||
HL | 1.368 4 | 1.556 9 | 1.249 1 | 1.449 6 | 1.637 8 | 1.356 3 | 1.504 3 | 1.654 1 | 1.615 7 | ||||
6 | ACI | 0.940 0 | 0.881 0 | 0.913 0 | 0.936 0 | 0.873 0 | 0.910 0 | 0.931 0 | 0.868 0 | 0.907 0 | |||
AL | 1.692 9 | 1.871 7 | 1.683 9 | 1.702 7 | 1.972 7 | 1.797 1 | 1.823 2 | 1.982 4 | 1.942 1 | ||||
HPD | 0.951 0 | 0.915 0 | 0.960 0 | 0.949 0 | 0.913 0 | 0.949 0 | 0.947 0 | 0.904 0 | 0.946 0 | ||||
HL | 1.501 8 | 1.609 0 | 1.446 9 | 1.503 7 | 1.638 8 | 1.553 1 | 1.621 9 | 1.719 9 | 1.627 0 |
1 |
JAMMALAMADAKA S R, MANGALAM V. Nonparametric estimation for middle censored data. Journal of Nonparametric Statistics, 2003, 15 (2): 253- 265.
doi: 10.1080/1048525031000089266 |
2 | JAMMALAMADAKA S R, IYER S K. Approximate selfconsistency for middle censored data. Journal of Statistical Planning and Inference, 2004, 124 (1): 75- 86. |
3 |
IYER S K, JAMMALAMADAKA S R, KUNDN D. Analysis of middle-censored data with exponential lifetime distributions. Journal of Statistical Planning and Inference, 2008, 138 (11): 3550- 3560.
doi: 10.1016/j.jspi.2007.03.062 |
4 |
DAVARZANI N, PARSIAN A. Statistical inference for discrete middle-censored data. Journal of Statistical Planning and Inference, 2011, 141 (4): 1455- 1462.
doi: 10.1016/j.jspi.2010.10.012 |
5 | SANKARAN P G, PRASAD S. Weibull regression model for analysis of middle-censored lifetime data. Journal of Statistics and Management Systems, 2015, 17 (5): 433- 443. |
6 |
AHMADI K, REZAEI M, YOUSEFZADEH F. Statistical analysis of middle censored competing risks data with exponential distribution. Journal of Statistical Computation and Simulation, 2017, 87 (16): 3082- 3110.
doi: 10.1080/00949655.2017.1357721 |
7 | BHATTACHARYA S, PRADHAN B, KUNDN D. Analysis of hybrid censored competing risks data. Statistics:A Journal of Theoretical and Applied Statistics, 2014, 48 (5): 1138- 1154. |
8 |
MAO S, SHI Y M, SUN Y D. Exact inference for competing risks model with generalized Type-Ⅰ hybrid censored exponential data. Journal of Statistical Computation and Simulation, 2014, 84 (11): 2506- 2521.
doi: 10.1080/00949655.2013.851681 |
9 |
WANG L. Estimation for exponential distribution based on competing risk middle censoring data. Communications in Statistics-Theory and Methods, 2016, 45 (8): 2378- 2391.
doi: 10.1080/03610926.2013.879893 |
10 |
ASHOUR S K, NASSAR M. Inference for Weibull distribution under adaptive Type-Ⅰ progressive hybrid censored competing risks data. Communications in Statistics-Theory and Methods, 2017, 46 (10): 4756- 4733.
doi: 10.1080/03610926.2015.1083111 |
11 | AHMADI K, REZAEI M, YOUSEFZADEH F. Progressively Type-Ⅱ censored competing risks data for exponential distributions based on sequential order statistics. Communications in Statistics-Simulation and Computation, 2017, 47 (5): 1276- 1296. |
12 |
GUMBEL E J. Bivariate exponential distribution. Journal of the American Statistical Association, 1960, 55 (292): 698- 707.
doi: 10.1080/01621459.1960.10483368 |
13 |
MARSHALL A W, OLKIN I. A multivariate exponential distribution. Journal of the American Statistical Association, 1967, 62 (317): 30- 44.
doi: 10.1080/01621459.1967.10482885 |
14 |
HENRICH G, JENSEN U. Parameter estimation for a bivariate lifetime distribution in reliability with multivariate extension. Metrika, 1995, 42 (1): 49- 65.
doi: 10.1007/BF01894288 |
15 |
KUNDU D, GUPTA A K. Bayes estimation for the MarshallOlkin bivariate Weibull distribution. Computational Statistics and Data Analysis, 2013, 57 (1): 271- 281.
doi: 10.1016/j.csda.2012.06.002 |
16 | FEIZJAVADIAN S H, HASHEME R. Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall-Olkin bivariate Weibull distribution. Computational Statistics and Data Analysis, 2015, 82 (2): 19- 34. |
17 |
DAVARZANI N, PARSIAN A, PEETERS R. Statistical inference on middle-censored data in a dependent setup. Journal of Statistical Theory and Practice, 2015, 9 (3): 646- 657.
doi: 10.1080/15598608.2014.978959 |
18 | DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood estimation from incompletedata via the EM algorithm. Journal of the Royal Statistical Society, Series B, 1977, 39 (1): 1- 38. |
19 |
CHEN D G, LIO Y L. Parameter estimations for generalized exponential distribution under progressive Type-Ⅰ interval censoring. Computational Statistics and Data Analysis, 2010, 54 (6): 1581- 1591.
doi: 10.1016/j.csda.2010.01.007 |
20 |
TEIMOURI M, GUPTA A K. Estimation methods for the Gompertz-Makeham distribution under progressively Type-Ⅰ interval censoring scheme. Nation Academy Science Letters, 2012, 35 (3): 227- 235.
doi: 10.1007/s40009-012-0048-4 |
21 |
AHMADI K, YOUSEFZADEH F. Estimation for the parameters of generalized half-normal distribution based on progressive Type-Ⅰ interval censoring. Communications in Statistics-Simulation and Computation, 2015, 44 (10): 2671- 2695.
doi: 10.1080/03610918.2013.842590 |
22 |
KUNDU D. On hybrid censored Weibull distribution. Journal of Statistical Planning and Inference, 2007, 137 (7): 2127- 2142.
doi: 10.1016/j.jspi.2006.06.043 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||