Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (1): 132-143.doi: 10.21629/JSEE.2019.01.13
• Systems Engineering • Previous Articles Next Articles
Jiale GAO*(), Qinghua XING(), Chengli FAN(), Zhibing LIANG()
Received:
2017-07-06
Online:
2019-02-27
Published:
2019-02-27
Contact:
Jiale GAO
E-mail:gaojiale_kgd@163.com;liuxqh@126.com;ff516@163.com;liangzhibing@163.com
About author:
GAO Jiale was born in 1990. He received his M.S. degree from Air Force Engineering University (AFEU) in 2015. He is currently pursuing his Ph.D. degree at AFEU. His research interests include the evolutionary multi-objective optimization, and sensor resource scheduling. E-mail:Supported by:
Jiale GAO, Qinghua XING, Chengli FAN, Zhibing LIANG. Double adaptive selection strategy for MOEA/D[J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 132-143.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Benchmark functions"
Name | Range | Characteristics | ||
F1 | 30 | 2 | Convex, unimodal | |
F2 | 30 | 2 | Convex, multimodal | |
F3 | 30 | 2 | Convex, multimodal | |
F4 | 30 | 2 | Convex, multimodal | |
WFG1 | 12 | 3 | Convex, unimodal, mixed | |
WFG2 | 12 | 3 | Convex, multimodal, disconnected | |
WFG3 | 12 | 3 | Liner, unimodal, degenerate | |
WFG4 | 12 | 3 | Convex, multimodal | |
DTLZ1 | 10 | 3 | Nonconvex, multimodal | |
DTLZ2 | 10 | 3 | Nonconvex, unimodal |
Table 2
Comparison of results with respect to three parameter settings on IGD"
Problem | DAS3 | DAS2 | DAS1 | |
F1 | Mean | 3.268E-02 | 1.990E-03 | 1.999E-03 |
IQR | 3.400E-03 | 2.420E-05 | 1.700E-05 | |
Rank | 3 | 1 | 2 | |
F2 | Mean | 3.737E-02 | 4.276E-03 | 4.430E-03 |
IQR | 3.520E-03 | 1.140E-03 | 1.280E-03 | |
Rank | 3 | 1 | 2 | |
F3 | Mean | 4.169E-02 | 3.295E-03 | 4.354E-03 |
IQR | 3.540E-03 | 4.560E-04 | 2.050E-03 | |
Rank | 3 | 1 | 2 | |
F4 | Mean | 4.672E-02 | 5.277E-03 | 3.145E-03 |
IQR | 9.310E-03 | 3.550E-03 | 7.630E-04 | |
Rank | 3 | 2 | 1 | |
WFG1 | Mean | 4.122E-01 | 3.059E-01 | 2.884E-01 |
IQR | 4.050E-02 | 5.610E-02 | 4.220E-02 | |
Rank | 3 | 2 | 1 | |
WFG2 | Mean | 4.855E-01 | 4.540E-01 | 4.316E-01 |
IQR | 8.220E-03 | 4.000E-02 | 5.910E-02 | |
Rank | 3 | 2 | 1 | |
WFG3 | Mean | 4.890E-02 | 4.619E-02 | 4.627E-02 |
IQR | 8.210E-04 | 1.890E-04 | 8.410E-03 | |
Rank | 3 | 1 | 2 | |
WFG4 | Mean | 2.614E-01 | 2.320E-01 | 2.304E-01 |
IQR | 8.400E-03 | 4.000E-03 | 2.210E-03 | |
Rank | 3 | 2 | 1 | |
DTLZ1 | Mean | 1.465E-02 | 1.360E-02 | 1.370E-02 |
IQR | 1.010E-04 | 5.470E-05 | 3.610E-07 | |
Rank | 3 | 1 | 2 | |
DTLZ2 | Mean | 5.076E-02 | 4.900E-02 | 4.886E-02 |
IQR | 1.430E-04 | 1.780E-04 | 2.020E-04 | |
Rank | 3 | 2 | 1 | |
Rank sum | 30 | 15 | 15 | |
0/10/0 | 5/1/4 |
Table 3
Comparison of results with respect to three parameter settings on spacing"
Problem | DAS3 | DAS2 | DAS1 | |
F1 | Mean | 1.103E-02 | 3.008E-03 | 2.934E-03 |
IQR | 1.850E-02 | 6.510E-05 | 2.800E-04 | |
Rank | 3 | 2 | 1 | |
F2 | Mean | 4.143E-02 | 2.119E-02 | 2.145E-02 |
IQR | 1.080E-01 | 4.730E-02 | 2.290E-02 | |
Rank | 3 | 1 | 2 | |
F3 | Mean | 3.468E-03 | 3.255E-03 | 4.910E-03 |
IQR | 4.090E-03 | 2.360E-03 | 3.860E-03 | |
Rank | 2 | 1 | 3 | |
F4 | Mean | 5.601E-03 | 3.271E-03 | 2.749E-03 |
IQR | 4.590E-03 | 3.180E-03 | 4.580E-04 | |
Rank | 3 | 2 | 1 | |
WFG1 | Mean | 8.347E-02 | 1.135E-01 | 8.561E-02 |
IQR | 1.600E-02 | 2.130E-02 | 1.960E-02 | |
Rank | 1 | 3 | 2 | |
WFG2 | Mean | 7.098E-02 | 7.427E-02 | 7.920E-02 |
IQR | 4.050E-02 | 2.000E-02 | 2.930E-03 | |
Rank | 1 | 2 | 3 | |
WFG3 | Mean | 1.910E-01 | 1.908E-01 | 1.840E-01 |
IQR | 3.930E-03 | 3.430E-03 | 3.900E-04 | |
Rank | 3 | 2 | 1 | |
WFG4 | Mean | 1.870E-01 | 1.889E-01 | 1.703E-01 |
IQR | 9.660E-03 | 1.020E-02 | 3.650E-03 | |
Rank | 2 | 3 | 1 | |
DTLZ1 | Mean | 7.696E-02 | 7.810E-02 | 7.871E-05 |
IQR | 1.070E-05 | 5.660E-05 | 1.010E-05 | |
Rank | 1 | 2 | 3 | |
DTLZ2 | Mean | 3.699E-02 | 3.808E-02 | 3.796E-02 |
IQR | 1.210E-03 | 7.870E-04 | 9.510E-06 | |
Rank | 1 | 3 | 2 | |
Rank sum | 20 | 21 | 19 | |
4/6/0 | 2/5/3 |
Table 4
Comparative results of all compared algorithms regarding IGD"
Problem | NSGAII | MOEAD | MOEAD-DRA | MOEAD-AGR | MOEAD-DAS | |
F1 | Mean | 2.014E-03 | 4.173E-03 | 1.996E-03 | 3.425E-03 | 1.999E-03 |
IQR | 1.160E-05 | 8.710E-04 | 6.790E-06 | 1.010E-04 | 1.700E-05 | |
Rank | 3 | 5 | 1 | 4 | 2 | |
F2 | Mean | 1.794E-02 | 1.695E-01 | 4.848E-03 | 2.593E-02 | 4.430E-03 |
IQR | 3.360E-03 | 7.210E-02 | 3.570E-04 | 6.510E-03 | 1.280E-03 | |
Rank | 3 | 5 | 2 | 4 | 1 | |
F3 | Mean | 6.468E-03 | 4.851E-02 | 4.742E-03 | 1.143E-02 | 4.354E-03 |
IQR | 5.480E-04 | 2.600E-02 | 2.210E-04 | 4.030E-03 | 2.050E-03 | |
Rank | 3 | 5 | 2 | 4 | 1 | |
F4 | Mean | 8.164E-03 | 6.125E-02 | 6.740E-03 | 6.945E-03 | 3.145E-03 |
IQR | 9.820E-04 | 3.050E-02 | 1.180E-03 | 8.760E-04 | 7.630E-04 | |
Rank | 4 | 5 | 2 | 3 | 1 | |
WFG1 | Mean | 1.659E+00 | 2.356E-01 | 1.242E+00 | 1.800E-01 | 2.884E-01 |
IQR | 5.330E-02 | 5.900E-03 | 9.650E-02 | 1.280E-02 | 4.220E-02 | |
Rank | 5 | 2 | 4 | 1 | 3 | |
WFG2 | Mean | 4.400E-01 | 6.749E-01 | 4.391E-01 | 1.307E-01 | 4.316E-01 |
IQR | 1.500E-02 | 1.720E-01 | 4.080E-02 | 4.570E-03 | 5.910E-02 | |
Rank | 4 | 5 | 3 | 1 | 2 | |
WFG3 | Mean | 5.775E-02 | 8.325E-02 | 5.531E-02 | 5.494E-02 | 4.627E-02 |
IQR | 1.450E-03 | 7.420E-04 | 3.990E-04 | 3.260E-04 | 8.410E-03 | |
Rank | 4 | 5 | 3 | 2 | 1 | |
WFG4 | Mean | 2.436E-01 | 1.784E-01 | 2.525E-01 | 1.884E-01 | 2.304E-01 |
IQR | 2.870E-03 | 3.440E-03 | 5.040E-03 | 3.090E-03 | 2.210E-03 | |
Rank | 4 | 1 | 5 | 2 | 3 | |
DTLZ1 | Mean | 1.984E-02 | 1.975E-02 | 1.979E-02 | 1.901E-02 | 1.370E-02 |
IQR | 2.540E-05 | 3.130E-05 | 3.000E-05 | 5.340E-04 | 3.610E-07 | |
Rank | 5 | 3 | 4 | 2 | 1 | |
DTLZ2 | Mean | 4.894E-02 | 3.638E-02 | 4.878E-02 | 4.772E-02 | 4.886E-02 |
IQR | 1.550E-04 | 3.490E-07 | 1.350E-04 | 7.550E-04 | 2.020E-04 | |
Rank | 5 | 1 | 3 | 2 | 4 | |
Rank sum | 40 | 37 | 29 | 25 | 19 | |
0/9/1 | 2/8/0 | 1/8/1 | 2/8/0 |
Table 5
Comparative results of all compared algorithms regarding spacing"
Problem | NSGAII | MOEAD | ADEMO/D | MOEA/D-AGR | MOEA/D-DAS | |
F1 | Mean | 5.138E-03 | 5.240E-03 | 5.077E-03 | 3.712E-03 | 2.934E-03 |
IQR | 1.010E-04 | 6.710E-05 | 1.300E-04 | 2.390E-04 | 2.800E-04 | |
Rank | 4 | 5 | 3 | 2 | 1 | |
F2 | Mean | 8.175E-02 | 9.165E-03 | 1.411E-02 | 1.904E-02 | 2.145E-02 |
IQR | 7.140E-02 | 3.190E-03 | 8.670E-03 | 2.350E-02 | 2.290E-02 | |
Rank | 5 | 1 | 2 | 3 | 4 | |
F3 | Mean | 6.476E-02 | 6.509E-03 | 1.553E-02 | 6.150E-03 | 4.910E-03 |
IQR | 7.130E-02 | 7.270E-04 | 2.090E-02 | 4.340E-03 | 3.860E-03 | |
Rank | 5 | 3 | 4 | 2 | 1 | |
F4 | Mean | 2.158E-02 | 1.612E-02 | 1.023E-02 | 2.110E-02 | 2.749E-03 |
IQR | 2.560E-02 | 1.350E-02 | 4.770E-03 | 1.640E-02 | 4.580E-04 | |
Rank | 5 | 4 | 3 | 2 | 1 | |
WFG1 | Mean | 1.258E-01 | 1.751E-01 | 1.472E-01 | 1.110E-01 | 8.561E-02 |
IQR | 2.400E-02 | 1.190E-01 | 1.350E-01 | 9.730E-03 | 1.960E-02 | |
Rank | 3 | 5 | 4 | 2 | 1 | |
WFG2 | Mean | 1.301E-01 | 1.224E-01 | 1.117E-01 | 1.518E-01 | 7.920E-02 |
IQR | 6.360E-02 | 2.690E-02 | 9.160E-03 | 4.990E-02 | 2.930E-03 | |
Rank | 4 | 3 | 2 | 5 | 1 | |
WFG3 | Mean | 1.494E-01 | 1.551E-01 | 1.478E-01 | 8.373E-02 | 1.840E-01 |
IQR | 2.150E-03 | 3.320E-03 | 2.970E-03 | 3.900E-03 | 3.900E-04 | |
Rank | 3 | 4 | 2 | 1 | 5 | |
WFG4 | Mean | 2.444E-01 | 2.682E-01 | 2.632E-01 | 1.507E-01 | 1.703E-01 |
IQR | 1.070E-02 | 1.120E-02 | 6.560E-03 | 4.980E-03 | 3.650E-03 | |
Rank | 3 | 5 | 4 | 1 | 2 | |
DTLZ1 | Mean | 2.020E-02 | 2.027E-02 | 1.571E-02 | 1.562E-02 | 7.871E-05 |
IQR | 3.900E-04 | 3.160E-04 | 3.850E-04 | 5.360E-04 | 1.010E-05 | |
Rank | 4 | 5 | 3 | 2 | 1 | |
DTLZ2 | Mean | 5.773E-02 | 5.563E-02 | 5.674E-02 | 3.764E-02 | 3.796E-02 |
IQR | 4.520E-04 | 1.820E-03 | 7.820E-04 | 2.560E-03 | 9.510E-06 | |
Rank | 5 | 3 | 4 | 1 | 2 | |
Rang sum | 41 | 38 | 31 | 21 | 19 | |
0/10/0 | 1/9/0 | 0/10/0 | 3/7/0 |
Table 6
Average CPU time (in seconds) cost by all compared MOEA/D variants"
Problem | MOEAD | MOEAD-DRA | MOEAD-AGR | MOEAD-DAS |
F1 | 78.9 | 81.4 | 88.7 | 93.7 |
F2 | 76.1 | 78.6 | 85.9 | 92.6 |
F3 | 75.9 | 78.3 | 85.1 | 96.3 |
F4 | 76.2 | 79.6 | 88.4 | 98.2 |
WFG1 | 111.5 | 114.0 | 124.7 | 129.4 |
WFG2 | 109.2 | 111.7 | 118.0 | 121.7 |
WFG3 | 105.9 | 108.4 | 119.1 | 125.5 |
WFG4 | 105.6 | 109.1 | 116.4 | 122.6 |
DTLZ1 | 70.2 | 75.6 | 86.6 | 93.8 |
DTLZ2 | 76.4 | 79.9 | 87.0 | 95.6 |
1 |
XU X L, CAO L L, WANG X H. Resource pre-allocation algorithms for low-energy task scheduling of cloud computing. Journal of Systems Engineering and Electronics, 2016, 27 (2): 457- 469.
doi: 10.1109/JSEE.2016.00047 |
2 | TAVANA M, LI Z, MOBIN M, et al. Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Systems with Applications an International Journal, 2016, 50 (C): 17- 39. |
3 | DEB K, AGRAWAL R B. Simulated binary crossover for continuous search space. Complex Systems, 1994, 9 (3): 115- 148. |
4 |
STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359.
doi: 10.1023/A:1008202821328 |
5 | LIN Q, CHEN J, ZHAN Z H, et al. A hybrid evolutionary immune algorithm for multiobjective optimization problems. IEEE Trans. on Evolutionary Computation, 2016, 20 (5): 711- 729. |
6 | QI Y, HOU Z, YIN M, et al. An immune multi-objective optimization algorithm with differential evolution inspired recombination. Applied Soft Computing, 2015, 29 (C): 395- 410. |
7 | ZHU Q, LIN Q, DU Z, et al. A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm. Information Sciences, 2016, 345 (C): 177- 198. |
8 | VENSKE S M, GONÇALVES R A, DELGADO M R. ADEMO/D:multiobjective optimization by an adaptive differential evolution algorithm. Neurocomputing, 2014, 127 (127): 65- 77. |
9 | LI K, FIALHO A, KWONG S, et al. Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation, 2014, 18 (1): 114- 130. |
10 | LIN Q Z, LIU Z W, YAN Q, et al. Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Information Sciences, 2016, 339 (C): 332- 352. |
11 | WANG Z, ZHANG Q, ZHOU A, et al. Adaptive replacement strategies for MOEA/D. IEEE Trans. on Cybernetics, 2017, 46 (2): 474- 486. |
12 | ZHANG Q, LI H. MOEA/D:a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation, 2007, 11 (6): 712- 731. |
13 | ZHANG Q F, LIU W, LI H. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. Proc. of the IEEE Congress on Evolutionary Computation, 2009: 203-208. |
14 | HILLERMEIER C. Nonlinear multiobjective optimization. Heidelberg: Birkhaüser Verlag, 2001. |
15 |
SINDHYA K, RUUSKA S, HAANPÄÜ T, et al. A new hybrid mutation operator for multiobjective optimization with differential evolution. Soft Computing, 2011, 15 (10): 2041- 2055.
doi: 10.1007/s00500-011-0704-5 |
16 | ELSAYED S M, SARKER R A, ESSAM D L. GA with a new multi-parent crossover for constrained optimization. Proc. of the IEEE Evolutionary Computation, 2011: 857-864. |
17 | QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. on Evolutionary Computation, 2009, 13 (2): 398- 417. |
18 | LI H, ZHANG Q. Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. on Evolutionary Computation, 2009, 13 (2): 284- 302. |
19 | DEB K, THIELE L, LAUMANNS M, et al. Scalable multiobjective optimization test problems. Proc. of the IEEE Congress on Evolutionary Computation, 2002: 825-830. |
20 | HUBAND S, BARONE L, WHILE L, et al. A scalable multiobjective test problem toolkit. Lecture Notes in Computer Science, 2005, 3410, 280- 295. |
21 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Trans. on Evolutionary Computation, 2002, 6 (2): 182- 197. |
22 | COELLO C A C, CORTÉS N C. Solving multiobjective optimization problems using an artificial immune system. Genetic Programming & Evolvable Machines, 2005, 6 (2): 163- 190. |
23 | MENCHACA-MENDEZ A, COELLO C A C. Selection mechanisms based on the maximin fitness function to solve multi-objective optimization problems. Information Sciences, 2016, 332 (C): 131- 152. |
24 | DEB K, BEYER H G. Self-adaptive genetic algorithms with simulated binary crossover. Evolutionary Computation, 2001, 9 (2): 197- 221. |
[1] | Liting SUN, Xiang WANG, Zhitao HUANG. Unintentional modulation microstructure enlargement [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 522-533. |
[2] | Chaoxuan QIN, Xiaohui GU. A single image dehazing method based on decomposition strategy [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 279-293. |
[3] | Jiaxin HU, Leping YANG, Huan HUANG, Yanwei ZHU. Optimal reconfiguration of constellation using adaptive innovation driven multiobjective evolutionary algorithm [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1527-1538. |
[4] | Zining WANG, Min LIN, Xiaogang TANG, Kefeng GUO, Shuo HUANG, Ming CHENG. Multi-objective robust secure beamforming for cognitive satellite and UAV networks [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 789-798. |
[5] | Xiuli WU, Junjian PENG, Zirun XIE, Ning ZHAO, Shaomin WU. An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 272-285. |
[6] | Shiyun LI, Sheng ZHONG, Zhi PEI, Wenchao YI, Yong CHEN, Cheng WANG, Wenzhu ZHANG. Multi-objective reconfigurable production line scheduling for smart home appliances [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 297-317. |
[7] | Yong WANG, Xingyu ZHOU, Xiaofei LU, Yajun LI. An approach of motion compensation and ISAR imaging for micro-motion targets [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 68-80. |
[8] | Fan LI, Jiajun XIONG, Xuhui LAN, Hongkui BI, Xin CHEN. NSHV trajectory prediction algorithm based on aerodynamic acceleration EMD decomposition [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 103-117. |
[9] | Xiangqian XU, Kewei YANG, Yajie DOU, Zhexuan ZHOU, Ziyi CHEN, Yuejin TAN. High-end equipment development task decomposition and scheme selection method [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 118-135. |
[10] | Jianjiang WANG, Xuejun HU, Chuan HE. Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 163-177. |
[11] | Zhen XU, Enze ZHANG, Qingwei CHEN. Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 130-141. |
[12] | Yuanfa JI, Xiaoqian CHEN, Qiang FU, Xiyan SUN, Weimin ZHEN. Reconstruction of sub cross-correlation cancellation technique for unambiguous acquisition of BOC(kn, n) signals [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 852-860. |
[13] | Yongbo LI, Shubin SI, Zhiliang LIU, Xihui LIANG. Review of local mean decomposition and its application in fault diagnosis of rotating machinery [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 799-814. |
[14] | Yan'gang LIANG, Zheng QIN. A decision support system for satellite layout integrating multi-objective optimization and multi-attribute decision making [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 535-544. |
[15] | Fenggang YAN, Shuai LIU, Jun WANG, Ming JIN. Closed-form algorithms for computing the intersection of two subspaces [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 245-250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||