Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (6): 1251-1262.doi: 10.21629/JSEE.2018.06.12
• Control Theory and Application • Previous Articles Next Articles
Ping MA(), Denghui ZHANG(), Songyan WANG(), Tao CHAO*()
Received:
2017-09-26
Online:
2018-12-25
Published:
2018-12-26
Contact:
Tao CHAO
E-mail:pingma@hit.edu.cn;zdh_hit_2016@163.com;sywang@hit.edu.cn;chaotao2000@163.com
About author:
MA Ping was born in 1970. She received her Ph.D. degree in control science and engineering from Harbin Institute of Technology in 2003. She is currently a professor in the Control and Simulation Center at Harbin Institute of Technology. Her research interests are the design and implement ation of distributed simulation system and verification validation and accreditation of complex simulation system. E-mail: Supported by:
Ping MA, Denghui ZHANG, Songyan WANG, Tao CHAO. Integrated guidance and control design method based on finite-time state observer[J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1251-1262.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | ZHANG Y, GUO J, TANG S J, et al. Integrated missile guidance and control three-channel decoupling design method. Acta Aeronautica et Astronautica Sinica, 2014, 35 (12): 3438- 3450. |
2 | ZHA X, CUI P Y, CHANG B J. An integrated approach to guidance and control for aircraft applying to attack the ground fixed targets. Journal of Astronautics, 2005, 26 (1): 13- 18. |
3 | YIN Y X, YANG M, WANG Z C. Three dimensional guidance and control for missile. Electric Machines and Control, 2010, 14 (3): 83- 91. |
4 |
ZHOU H, ZHAO H, HUANG H Q, et al. Integrated guidance and control design of the suicide UCAV for terminal attack. Journal of Systems Engineering and Electronics, 2017, 28 (3): 546- 555.
doi: 10.21629/JSEE.2017.03.14 |
5 | HE S M, SONG T, LIN D F. Impact angle constrained integrated guidance and control for maneuvering target interception. Journal of Guidance, Control, and Dynamics, 2017, 40 (10): 2652- 2660. |
6 |
HE S M, WANG W, WANG J. Three-dimensional multivariable integrated guidance and control design for maneuvering targets interception. Journal of The Franklin Institute, 2016, 353 (16): 4330- 4350.
doi: 10.1016/j.jfranklin.2016.08.008 |
7 | TIAN B L, FAN W R, ZONG Q. Integrated guidance and control for reusable launch vehicle in reentry phase. Nonlinear Dynamic, 2015, 80 (1/2): 397- 412. |
8 | SUN X Y, CHAO T, WANG S Y, et al. Integrated guidance and control design method considering channel coupling. Journal of Astronautics, 2016, 37 (8): 936- 945. |
9 |
XIN M, BALAKRISHNAN S N, OHLMEYER E J. Integrated guidance and control of missile with θ-D method. IEEE Trans. on Control Systems Technology, 2006, 14 (6): 981- 992.
doi: 10.1109/TCST.2006.876903 |
10 |
MENON P K, OHLMEYER E J. Integrated design of agile missile guidance and autopilot system. Control Engineering Practice, 2001, 9 (10): 1095- 1106.
doi: 10.1016/S0967-0661(01)00082-X |
11 |
PANCHAL B, MATE N, TALOLE S E. Continuous-time predictive control-based integrated guidance and control. Journal of Guidance, Control, and Dynamics, 2017, 40 (7): 1579- 1595.
doi: 10.2514/1.G002661 |
12 |
YAN H, TAN S P, HE Y Z. A small-gain method for integrated guidance and control in terminal phase of reentry. Acta Astronautica, 2017, 132, 282- 292.
doi: 10.1016/j.actaastro.2016.12.027 |
13 |
VADDI S, MENON P K, OHLMEYER E J. Numerical statedependent Riccati equation approach for missile integrated guidance control. Journal of Guidance, Control, and Dynamics, 2009, 32 (2): 699- 703.
doi: 10.2514/1.34291 |
14 | DONG F Y, LEI H M, ZHOU C J, et al. Research of integrated robust high order sliding mode guidance and control for missile. Acta Aeronautica et Astronautica Sinica, 2013, 34 (9): 2212- 2218. |
15 | DONG F Y, LEI H M, LI J, et al. Design of integrated adaptive optimal sliding-mode guidance and control for interceptor. Journal of Astronautics, 2013, 34 (11): 1456- 1641. |
16 |
SONG H T, ZHANG T. Fast robust integrated guidance and control design of interceptors. IEEE Trans. on Control Systems Technology, 2016, 24 (1): 349- 356.
doi: 10.1109/TCST.2015.2431641 |
17 |
ZHANG C, WU Y J. Non-singular terminal dynamic surface control based integrated guidance and control design and simulation. ISA Transactions, 2016, 63, 112- 120.
doi: 10.1016/j.isatra.2016.03.013 |
18 |
WANG J H, LIU L H, ZHAO T, et al. Integrated guidance and control for hypersonic vehicle in dive phase with multiple constraints. Aerospace Science and Technology, 2016, 53, 103- 115.
doi: 10.1016/j.ast.2016.03.019 |
19 |
WANG X, WANG J. Partial integrated missile guidance and control with finite time convergence. Journal of Guidance, Control, and Dynamics, 2013, 36 (5): 1399- 1409.
doi: 10.2514/1.58983 |
20 |
SUN X J, ZHOU R, HOU D L. Output-feedback based partial integrated missile guidance and control law design. Journal of Systems Engineering and Electronics, 2016, 27 (6): 1238- 1248.
doi: 10.21629/JSEE.2016.06.12 |
21 | SUN X Y, WANG S Y, SHENG S J, et al. Adding a power integrator technique based integrated guidance and control design. Control and Decision, 2018, 33 (2): 242- 248. |
22 |
SHIMA T, IDAN M, ODED M G. Sliding-mode control for integrated missile autopilot guidance. Journal of Guidance, Control, and Dynamics, 2006, 29 (2): 250- 260.
doi: 10.2514/1.14951 |
23 |
YAN H, JI H B. Integrated guidance and control for dualcontrol missile based on small gain theorem. Automatica, 2012, 48 (10): 2686- 2692.
doi: 10.1016/j.automatica.2012.06.084 |
24 |
HOU M Z, DUAN G R. Adaptive dynamic surface control for integrated missile guidance and autopilot. International Journal of Automation and Computing, 2011, 8 (1): 122- 127.
doi: 10.1007/s11633-010-0563-z |
25 |
GURFIL P. Zero-miss-distance guidance law based on lineof-sight rate measurement only. Control Engineering Practice, 2003, 11 (7): 819- 832.
doi: 10.1016/S0967-0661(02)00208-3 |
26 |
CHWA D, CHOI J Y. Adaptive nonlinear guidance law considering control loop dynamcis. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (4): 1134- 1143.
doi: 10.1109/TAES.2003.1261117 |
27 |
BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 2000, 38 (3): 751- 766.
doi: 10.1137/S0363012997321358 |
28 |
DING S H, LI S H, ZHENG W X. Nonsmooth stabilization of a class of nonlinear cascaded systems. Automatica, 2012, 48 (10): 2597- 2606.
doi: 10.1016/j.automatica.2012.06.060 |
29 |
DU H B, QIAN C J, YANG S Z, et al. Recursive design of finite-time convergent observers for a class of time-varying nonlinear system. Automatica, 2013, 49 (2): 601- 609.
doi: 10.1016/j.automatica.2012.11.036 |
30 |
HUANG S, XIANG Z. Finite-time stabilization of switched stochastic nonlinear systems with mixed odd and even powers. Automatica, 2016, 73, 130- 137.
doi: 10.1016/j.automatica.2016.06.023 |
31 | SUN S. Guidance laws with finite time convergence for homing missiles. Harbin, China: Harbin Institute of Technology, 2010. (in Chinese) |
32 |
BHAT S P, BERNSTEIN D S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. on Automatic Control, 1998, 43 (5): 678- 682.
doi: 10.1109/9.668834 |
33 |
QIAN C, LIN W. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. on Automatic Control, 2001, 46 (7): 1061- 1079.
doi: 10.1109/9.935058 |
34 |
BACCIOTTI A, ROSIER L. Liapunov functions and stability in control theory. Automatica, 2005, 41 (12): 2183- 2184.
doi: 10.1016/j.automatica.2005.08.002 |
[1] | Hang GUO, Zheng WANG, Bin FU, Kang CHEN, Wenxing FU, Jie YAN. Impact angle constrained fuzzy adaptive fault tolerant IGC method for Ski-to-Turn missiles with unsteady aerodynamics and multiple disturbances [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1210-1226. |
[2] | Huan Zhou, Hui Zhao, Hanqiao Huang, and Xin Zhao. Integrated guidance and control design of the suicide UCAV for terminal attack [J]. Systems Engineering and Electronics, 2017, 28(3): 546-555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||