Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (5): 1046-1057.doi: 10.21629/JSEE.2018.05.15
• Control Theory and Application • Previous Articles Next Articles
Jingshuai HUANG1(), Hongbo ZHANG1,*(
), Guojian TANG1(
), Weimin BAO2(
)
Received:
2017-01-18
Online:
2018-10-26
Published:
2018-11-14
Contact:
Hongbo ZHANG
E-mail:hjs_nudt@126.com;zhanghb1304@ nudt.edu.cn;tangguojian@nudt.edu.cn;baoweimin@cashq.ac.cn
About author:
HUANG Jingshuai was born in 1993. He received his B.S. degree in aircraft design and engineering from Nanjing University of Aeronautics and Astronautics in 2013 and M.S. degree in aeronautical and astronautical science and technology form National University of Defense Technology in 2015, respectively. Now, he is a Ph.D. candidate in National University of Defense Technology. His research interests are in flight vehicle dynamics, intercept guidance and control. E-mail: Jingshuai HUANG, Hongbo ZHANG, Guojian TANG, Weimin BAO. Extended differential geometric guidance law for intercepting maneuvering targets[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1046-1057.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Simulation settings in Scenario A"
Setting | Missile | Target |
Initial position/km | (1, 20, 1.5) | (4, 30, 1.5) |
Initial speed/(km/s) | 1 | 0.4 |
Initial pointing of t | (0.6395, 0.7543, 0.1486) | (1, 0, 0) |
Initial pointing of n | (0.4726, – 0.2333, – 0.8498) | — |
Maneuvering manner | — | T1: (0, 2g0, 3g0); T2: (0, 2g0, 4g0 cos t) |
Table 2
Comparisons of simulation results in Scenario A"
Guidance law | T1 | T2 | |||
Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | ||
EDGGL | 0.893 7 | 453.609 0 | 0.572 2 | 516.655 0 | |
MEDGGL | 2.045 8 | 678.697 6 | 1.122 5 | 512.967 2 | |
ATPN | 0.621 4 | 382.178 4 | 0.608 8 | 447.278 9 | |
TPN | 1.869 7 | 613.499 1 | 3.283 5 | 397.705 2 | |
PPN | 1.358 4 | 571.554 3 | 0.935 0 | 398.742 9 |
Table 3
Simulation settings in Scenario B"
Setting | Missile | Target |
Initial position/km | (3.75, 30, 2.25) | (33.75, 45, 2.25) |
Initial speed/(km/s) | 2.1 | 2.7 |
Initial pointing of t | (0.480 0, 0.870 3, 0.110 4) | (– 1, 0, 0) |
Initial pointing of n | (– 0.541 0, 0.392 7, – 0.743 7) | — |
Maneuvering manner | — | K1: (0, g0, 2g0); K2: (0, g0, 3g0 cos t) |
Table 4
Comparisons of simulation results in Scenario B"
Guidance law | K1 | K2 | |||
Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | ||
EDGGL | 0.169 9 | 329.913 9 | 0.094 5 | 456.046 2 | |
MEDGGL | 0.381 7 | 406.016 7 | 0.094 5 | 456.046 2 | |
ATPN | 0.381 7 | 406.016 7 | 0.252 8 | 503.499 4 | |
TPN | 0.497 2 | 350.245 5 | 0.111 9 | 432.855 9 | |
PPN | 27.063 2 | 436.560 7 | 106.775 7 | 594.267 8 |
Table 5
Four situations for capture performance (Scenario A)"
Number | Initial tm | Initial nm | r0ω0 |
A1 | (0.639 5, 0.754 3, 0.148 6) | (0.472 6, – 0.233 3, – 0.849 8) | 0.149 1 < 0.6 |
A2 | (0.589 5, 0.654 3, 0.473 7) | (0.609 9, 0.024 0, – 0.792 1) | 0.473 7 < 0.6 |
A3 | (0.500 5, 0.654 3, 0.566 9) | (0.706 7, 0.069 4, – 0.704 1) | 0.574 3 < 0.6 |
A4 | (0.499 5, 0.604 3, 0.620 7) | (0.631 0, 0.237 2, – 0.738 7) | 0.625 6>0.6 |
Table 6
Comparisons of simulation results (Scenario A)"
Number | EDGGL | MEDGGL | PPN | |||||
Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | |||
A1 | 0.893 7 | 453.609 0 | 2.045 8 | 678.697 6 | 1.358 4 | 571.554 3 | ||
A2 | 0.726 8 | 909.613 0 | 2.121 1 | 1 057.006 0 | 1.322 8 | 817.518 0 | ||
A3 | 0.561 2 | 846.764 7 | 3.326 3 | 1 133.879 1 | 1.342 0 | 914.926 9 | ||
A4 | 111.859 6 | 1 231.055 0 | 10.418 8 | 1 154.896 1 | 1.323 9 | 989.302 0 |
Table 7
Four situations for capture performance (Scenario B)"
Number | Initial tm | Initial nm | r0ω0 |
B1 | (0.480 0, 0.870 3, 0.110 4) | (– 0.541 0, 0.392 7, – 0.743 7) | 0.111 0 < 0.285 7 |
B2 | (0.490 0, 0.848 0, 0.202 0) | (– 0.538 8, 0.476 8, – 0.694 6) | 0.205 1 < 0.285 7 |
B3 | (0.513 0, 0.820 3, 0.252 9) | (– 0.560 9, 0.543 3, – 0.624 7) | 0.262 6 < 0.285 7 |
B4 | (0.503 0, 0.810 3, 0.300 7) | (– 0.523 2, 0.562 4, – 0.640 4) | 0.310 0>0.285 7 |
Table 8
Comparisons of simulation results (Scenario B)"
Number | EDGGL | MEDGGL | PPN | |||||
Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | Miss distance/m | Δv/(m/s) | |||
B1 | 0.169 9 | 329.913 9 | 0.381 7 | 406.016 7 | 27.063 2 | 436.560 7 | ||
B2 | 0.160 5 | 804.178 1 | 0.276 9 | 804.918 2 | 228.857 0 | 766.148 4 | ||
B3 | 947.644 3 | 984.379 8 | 703.415 5 | 981.341 7 | 615.848 1 | 895.620 5 | ||
B4 | 1 922.640 0 | 991.853 5 | 1 537.572 4 | 990.479 6 | 1 089.664 4 | 941.525 8 |
1 | SHNEYDOR N A. Missile guidance and pursuit: kinematics, dynamics and control. Chichester: Horwood Publishing, 1998. |
2 |
SHUKLA U S, MAHAPATRA P R. The proportional navigation dilemma-pure or true. IEEE Trans. on Aerospace and Electronic Systems, 1990, 26 (2): 382- 392.
doi: 10.1109/7.53445 |
3 |
YUAN P J, CHERN J S. Ideal proportional navigation. Journal of Guidance, Control, and Dynamics, 1992, 15 (5): 1161- 1165.
doi: 10.2514/3.20964 |
4 |
YANG C D, YANG C C. A unified approach to proportional navigation. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33 (2): 557- 567.
doi: 10.1109/7.575895 |
5 | ZARCHAN P. Tactical and strategic missile guidance. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2012, 163- 171. |
6 | CHEN L, ZHANG B. Novel TPN control algorithm for exoatmospheric intercept. Journal of Systems Engineering and Electronics, 2009, 20 (6): 1290- 1295. |
7 |
LI K B, ZHANG T T, CHEN L. Ideal proportional navigation for exoatmospheric interception. Chinese Journal of Aeronautics, 2013, 26 (4): 976- 985.
doi: 10.1016/j.cja.2013.06.007 |
8 |
CHO N, KIM Y. Modified pure proportional navigation guidance law for impact time control. Journal of Guidance, Control, and Dynamics, 2016, 39 (4): 852- 872.
doi: 10.2514/1.G001618 |
9 | STRUIK D J. Lectures on classical differential geometry. New York: Dover Publications, 1988. |
10 |
CHO N, KIM Y, PARK S. Three-dimensional nonlinear differential geometric path-following guidance law. Journal of Guidance, Control, and Dynamics, 2015, 38 (12): 2366- 2385.
doi: 10.2514/1.G001060 |
11 |
MENG Y H, CHEN Q F, NI Q. A new geometric guidance approach to spacecraft near-distance rendezvous problem. Acta Astronautica, 2016, 129, 374- 383.
doi: 10.1016/j.actaastro.2016.09.032 |
12 |
CHIOU Y C, KUO C Y. Geometric approach to threedimensional missile guidance problem. Journal of Guidance, Control, and Dynamics, 1998, 21 (2): 335- 341.
doi: 10.2514/2.4240 |
13 |
KUO C Y, CHIOU Y C. Geometric analysis of missile guidance command. IEE Proceedings-Control Theory and Applications, 2000, 147 (2): 205- 211.
doi: 10.1049/ip-cta:20000294 |
14 | KUO C Y, SOETANTO D, CHIOU Y C. Geometric analysis of flight control command for tactical missile guidance. IEEE Trans. on Control Systems Technology, 2001, 9 (2): 234- 243. |
15 | LI C Y, JING W X. New results on three-dimensional differential geometric guidance and control problem. Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006: AIAA 2006-6086. |
16 |
LI C Y, JING W X, WANG H, et al. Iterative solution to differential geometric guidance problem. Aircraft Engineering and Aerospace Technology, 2006, 78 (5): 415- 425.
doi: 10.1108/00022660610685800 |
17 |
LI C Y, JING W X. Application of PID controller to 2D differential geometric guidance problem. Journal of Control Theory and Applications, 2007, 5 (3): 285- 290.
doi: 10.1007/s11768-006-6109-9 |
18 | LI C Y, JING W X. Fuzzy PID controller for 2D differential geometric guidance and control problem. IET Control Theory and Applications, 2007, 1 (3): 564- 571. |
19 |
LI C Y, JING W X, WANG H, et al. Development of flight control system for 2D differential geometric guidance and control problem. Aircraft Engineering and Aerospace Technology, 2007, 79 (1): 60- 68.
doi: 10.1108/00022660710720502 |
20 |
LI C Y, JING W X, WANG H, et al. A novel approach to the 2D differential geometric guidance problem. Transactions of the Japan Society for Aeronautical and Space Sciences, 2007, 50 (167): 34- 40.
doi: 10.2322/tjsass.50.34 |
21 |
LI C Y, JING W X, WANG H, et al. Gain-varying guidance algorithm using differential geometric guidance command. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (2): 725- 736.
doi: 10.1109/TAES.2010.5461652 |
22 |
LI K B, CHEN L, BAI X Z. Differential geometric modeling of guidance problem for interceptors. Science China Technological Sciences, 2011, 54 (9): 2283- 2295.
doi: 10.1007/s11431-011-4451-8 |
23 |
LI K B, CHEN L, TANG G J. Improved differential geometric guidance commands for endoatmospheric interception of highspeed targets. Science China Technological Sciences, 2013, 56 (2): 518- 528.
doi: 10.1007/s11431-012-5087-z |
24 |
LI K B, CHEN L, TANG G J. Algebraic solution of differential geometric guidance command and time delay control. Science China Technological Sciences, 2015, 58 (3): 565- 573.
doi: 10.1007/s11431-014-5730-y |
25 |
YE J K, LEI H M, XUE D F, et al. Nonlinear differential geometric guidance for maneuvering target. Journal of Systems Engineering and Electronics, 2012, 23 (5): 752- 760.
doi: 10.1109/JSEE.2012.00092 |
26 |
MA Y W, ZHANG W H, LONG H. Intelligent guidance method based on differential geometric guidance command and fuzzy self-adaptive guidance law. Journal of Intelligent and Fuzzy Systems, 2015, 29 (6): 2527- 2536.
doi: 10.3233/IFS-151955 |
27 |
MA Y W, ZHANG W H. Differential geometric guidance command with finite time convergence using extended state observer. Journal of Central South University, 2016, 23 (4): 859- 868.
doi: 10.1007/s11771-016-3133-x |
28 |
ARIFF O, ZBIKOWSKI R, TSOURDOS A, et al. Differential geometric guidance based on the involute of the targetos trajectory. Journal of Guidance, Control, and Dynamics, 2005, 28 (5): 990- 996.
doi: 10.2514/1.11041 |
29 |
WHITE B A, ZBIKOWSKI R, TSOURDOS A. Direct intercept guidance using differential geometric concepts. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43 (3): 899- 919.
doi: 10.1109/TAES.2007.4383582 |
[1] | Zhuanhua ZHANG, Gongjian ZHOU. Maneuvering target state estimation based on separate modeling of target trajectory shape and dynamic characteristics [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1195-1209. |
[2] | Jia HUANG, Sijiang CHANG, Shengfu CHEN. A hybrid proportional navigation based two-stage impact time control guidance law [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 461-473. |
[3] | Hongyin SHI, Yue LIU, Jianwen GUO, Mingxin LIU. ISAR autofocus imaging algorithm for maneuvering targets based on deep learning and keystone transform [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1178-1185. |
[4] | Zhichao BAO, Qiuxi JIANG, Fangzheng LIU. Multiple model efficient particle filter based track-before-detect for maneuvering weak targets [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 647-656. |
[5] | Gongguo XU, Ganlin SHAN, Xiusheng DUAN. Sensor scheduling for ground maneuvering target tracking in presence of detection blind zone [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 692-702. |
[6] | Shengnan FU, Xiaodong LIU, Wenjie ZHANG, Qunli XIA. Multiconstraint adaptive three-dimensional guidance law using convex optimization [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 791-803. |
[7] | Wenjie ZHANG, Shengnan FU, Wei LI, Qunli XIA. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 168-184. |
[8] | Hongwei ZHANG, Weixin XIE. Constrained auxiliary particle filtering for bearings-only maneuvering target tracking [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 684-695. |
[9] | Zhengyan ZHANG, Jianyun ZHANG. Tracking multiple targets in MIMO radar via adaptive asymmetric joint diagonalization with deflation [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 731-741. |
[10] | Hongyin SHI, Saixue XIA, Ye TIAN. ISAR imaging based on improved phase retrieval algorithm [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 278-285. |
[11] | Wei Pang, Xiaofang Xie, and Tao Sun. Improved bias proportional navigation with multiple constraints for guide ammunition#br# [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1193-1202. |
[12] | Xiaohua Nie and Fuming Zhang. Adaptive tracking algorithm based on 3D variable turn model [J]. Systems Engineering and Electronics, 2017, 28(5): 851-860. |
[13] | Shuyi Jia, Yun Zhang, and Guohong Wang. Highly maneuvering target tracking using multi-parameter fusion Singer model [J]. Systems Engineering and Electronics, 2017, 28(5): 841-850. |
[14] | Jianjuan Xiu, Kai Dong, and You He. Systematic error real-time registration based on modified input estimation [J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 986-992. |
[15] | Jinfeng Hu, Xuan He, Wange Li, Hui Ai, Huiyong Li, and Julan Xie. Parameter estimation of maneuvering targets in OTHR based on sparse time-frequency representation [J]. Systems Engineering and Electronics, 2016, 27(3): 574-580. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||