Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (5): 908-917.doi: 10.21629/JSEE.2018.05.03
• Electronics Technology • Previous Articles Next Articles
Junjie BAO(), Rui LI(), Pan LIU*(), Zhigang HUANG()
Received:
2017-04-26
Online:
2018-10-26
Published:
2018-11-14
Contact:
Pan LIU
E-mail:baojunjie@buaa.edu.cn;ruin@263.net;liupanlzu@yeah.net;baahzg@163.com
About author:
BAO Junjie was born in 1989. She is a Ph.D. candidate in communications and information systems at School of Electronic and Information Engineering, Beihang University. Her current research is targeted on the technology of satellite-based augmentation system integrity algorithms, mainly ionospheric correction. E-mail: Supported by:
Junjie BAO, Rui LI, Pan LIU, Zhigang HUANG. Impact of ionospheric irregularity on SBAS integrity: spatial threat modeling and improvement[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 908-917.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Ionospheric storm days during 2000 to 2005"
Date | Kp | Dst(nT) | Geomagnetic storm class |
2000.07.15 | 9 | – 295 | Extreme |
2000.07.16 | 8 | – 288 | Severe |
2001.03.31 | 9 | – 378 | Extreme |
2001.11.24 | 9 | – 204 | Extreme |
2003.10.29 | 9 | – 339 | Extreme |
2003.10.30 | 9 | – 368 | Extreme |
2003.10.31 | 8 | – 240 | Severe |
2003.11.20 | 9 | – 402 | Extreme |
2004.07.27 | 9 | – 152 | Extreme |
2004.11.08 | 9 | – 369 | Extreme |
2004.11.10 | 9 | – 264 | Extreme |
2005.08.24 | 9 | – 191 | Extreme |
2005.09.11 | 9 | – 131 | Extreme |
Table 2
Statistical results of UIVEs in March 2015"
User site | UIVEs bound | Mean reduction in UIVEs | |
2D spatial threat model | L2D spatial threat model | ||
alla | 100 | 100 | 46.0 |
brew | 100 | 100 | 25.7 |
dwi1 | 100 | 100 | 47.3 |
gus6 | 100 | 100 | 37.4 |
ict2 | 100 | 100 | 47.4 |
ipaz | 100 | 100 | 29.6 |
jplm | 100 | 100 | 31.1 |
loyk | 100 | 100 | 43.6 |
mepi | 100 | 100 | 34.2 |
mnok | 100 | 100 | 34.2 |
mtei | 100 | 100 | 32.3 |
mtnt | 100 | 100 | 33.0 |
p030 | 100 | 100 | 43.4 |
prmi | 100 | 100 | 16.1 |
wes2 | 100 | 100 | 36.0 |
1 |
KIM J, LEE Y J. Using ionospheric corrections from the space-based augmentation systems for low earth orbiting satellites. GPS Solutions, 2015, 19 (3): 423- 431.
doi: 10.1007/s10291-014-0402-8 |
2 |
RATNAM D V, DABBAKUTI J R K K, SUNDA S. Modeling of ionospheric time delays based on a multishell spherical harmonics function approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (12): 5784- 5790.
doi: 10.1109/JSTARS.2017.2743695 |
3 | SIVAVARAPRASAD G, RATNAM D V. Short-term forecasting of ionospheric total electron content over a low-latitude global navigation satellite system station. IET Radar Sonar & Navigation, 2017, 11 (8): 1309- 1320. |
4 | TAKAHASHI H, WRASSE C M, DENARDINI C M, et al. Ionospheric TEC weather map over South America. Space Weather-the International Journal of Research & Applications, 2017, 14 (11): 937- 949. |
5 | GAMPALA S, DEVANABOYINA V R. Application of SST to forecast ionospheric delays using GPS observations. IET Radar Sonar & Navigation, 2017, 11 (7): 1070- 1080. |
6 |
SPARKS L, KOMJATHY A, MANNUCCI A J. Sudden ionospheric delay decorrelation and its impact on the wide area augmentation system (WAAS). Radio Science, 2016, 39 (1): 1- 8.
doi: 10.17946/JRST.2016.39.1.01 |
7 |
RODRÍGUEZ-BOUZA M, PAPARINI C, OTERO X, et al. Southern European ionospheric TEC maps based on Kriging technique to monitor ionosphere behavior. Advances in Space Research, 2017, 60 (8): 1606- 1616.
doi: 10.1016/j.asr.2017.05.008 |
8 | HUANG L, ZHANG H, XU P, et al. Kriging with unknown variance components for regional ionospheric reconstruction. Sensors, 2016, 17 (3): 468- 500. |
9 | LAWRENCE S, BLANCH J, PANDYA N. Estimating ionospheric delay using Kriging: 1. Methodology. Radio Science, 2011, 46 (6): 1- 13. |
10 |
ABDELAZEEM M, ÇELIK R N, EL-RABBANY A. An accurate Kriging-based regional ionospheric model using combined GPS/BeiDou observations. Journal of Applied Geodesy, 2018, 12 (1): 65- 76.
doi: 10.1515/jag-2017-0023 |
11 | LIU D, YU X, CHEN L, et al. Analysis on ionospheric delay variogram modeling in China. Proc. of the China Satellite Navigation Conference, 2017: 119-130. |
12 | LEE J, KIM M. Optimized GNSS station selection to support long-term monitoring of ionospheric anomalies for aircraft landing systems. IEEE Trans. on Aerospace & Electronic Systems, 2017, 53 (1): 236- 246. |
13 | GRUNWALD G, BAKUŁA M, CIEĆKO A, et al. Examination of GPS/EGNOS integrity in north-eastern Poland. IET Radar Sonar & Navigation, 2016, 10 (1): 114- 121. |
14 | HAMEL P, SAMBOU D C, DARCES M, et al. Kriging method to perform scintillation maps based on measurement and GISM model. Radio Science, 2016, 49 (9): 746- 752. |
15 | LIU P, LI R. Improving extended Kriging with chapman model and exponential variation function model. Lecture Notes in Electrical Engineering, 2016, v389, 177- 187. |
16 |
MINKWITZ D, VAN D B K G, GERZEN T, et al. Tomography of the ionospheric electron density with geostatistical inversion. Annales Geophysicae, 2015, 33 (8): 1071- 1079.
doi: 10.5194/angeo-33-1071-2015 |
17 |
MINKWITZ D, DEN BOOGAART K G, GERZEN T, et al. Ionospheric tomography by gradient-enhanced Kriging with STEC measurements and ionosonde characteristics. Annales Geophysicae, 2016, 34 (11): 999- 1010.
doi: 10.5194/angeo-34-999-2016 |
18 |
EUGENE B. Considerations on ionospheric correction and integrity algorithm for Korean SBAS. Journal of Positioning, Navigation, and Timing, 2014, 3 (1): 17- 23.
doi: 10.11003/JPNT.2014.3.1.017 |
19 | AMMANA S R, ACHANTA S D. Estimation of overbound on ionospheric spatial decorrelation over low-latitude region for ground-based augmentation systems. IET Radar Sonar & Navigation, 2016, 10 (3): 637- 645. |
20 |
BORRIES C, JAKOWSKI N, KAURISTIE K, et al. On the dynamics of large-scale traveling ionospheric disturbances over Europe on 20 November 2003. Journal of Geophysical Research Space Physics, 2017, 122 (1): 1199- 1211.
doi: 10.1002/2016JA023050 |
21 | JUAN B, TODD W, PER E. Ionospheric threat model methodology for WAAS. Navigation, 2002, 49 (49): 103- 107. |
22 | SAKAI T, MATSUNAGA K, HOSHINOO K, et al. Modeling ionospheric spatial threat based on dense observation datasets for MSAS. Proc. of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation, 2008: 1918-1928. |
23 | ONUR K M, YEGANEHSAHAB A, DURMAZ M. Estimation of GBAS ionospheric threat model parameters using continuous GNSS observations for category i operations. Proc. of the EGU General Assembly Conference Abstracts. 2017: 13642. |
24 |
LEE J, PULLEN S, DATTA-BARUA S, et al. Real-time ionospheric threat adaptation using a space weather prediction for GNSS-based aircraft landing systems. IEEE Trans. on Intelligent Transportation Systems, 2017, 18 (7): 1752- 1761.
doi: 10.1109/TITS.2016.2627600 |
25 | BANG E, LEE J, LEE J, et al. Constructing ionospheric irregularity threat model for Korean SBAS. Proc. of the Ion Pacific PNT Meeting, 2013, 8900 (6): 296- 306. |
26 |
ZHANG Q, RUI L I, WANG Z. An improved ionospheric spatial threat model for SBAS. Chinese Journal of Electronics, 2017, 26 (5): 1105- 1110.
doi: 10.1049/cje.2017.07.002 |
27 | LIU D, FENG J, CHEN L, et al. A study on construction of ionospheric spatial threat model for China SBAS. Proc. of the China Satellite Navigation Conference, 2017: 195-208. |
28 | BLANCH J. Using Kriging to bound satellite ranging errors due to the ionosphere. 2004. |
29 | DATTA-BARUA S. Ionospheric threats to the integrity of airborne GPS users. 2008. |
30 | DO-229E. Minimum operational performance standards for global positioning system/satellite-based augmentation system airborne equipment. Washington, D.C.: Radio Technical Commission for Aeronautics, 2016. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||