Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (5): 881-898.doi: 10.21629/JSEE.2018.05.01
• Electronics Technology • Next Articles
Ruoyu ZHANG(), Honglin ZHAO*(), Jiayan ZHANG(), Shaobo JIA()
Received:
2017-05-27
Online:
2018-10-26
Published:
2018-11-14
Contact:
Honglin ZHAO
E-mail:hitzhangruoyu@163.com;hlzhao@hit.edu.cn;jyzhang@hit.edu.cn;jiashaobo2007@126.com
About author:
ZHANG Ruoyu was born in 1992. He received his B.S. degree in communication engineering from Harbin Institute of Technology, Harbin. He is currently pursuing his Ph.D. degree in electrical engineering. His research interests include compressed sensing, channel estimation, massive MIMO system. E-mail: Supported by:
Ruoyu ZHANG, Honglin ZHAO, Jiayan ZHANG, Shaobo JIA. Hybrid orthogonal and non-orthogonal pilot distribution based channel estimation in massive MIMO system[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 881-898.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
ANDREWS J G, BUZZI S, WAN C, et al. What will 5G be?. IEEE Journal on Selected Areas in Communications, 2014, 32 (6): 1065- 1082.
doi: 10.1109/JSAC.2014.2328098 |
2 |
LU L, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 2014, 8 (5): 742- 758.
doi: 10.1109/JSTSP.2014.2317671 |
3 |
WANG C X, HAIDER F, GAO X, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 2014, 52 (2): 122- 130.
doi: 10.1109/MCOM.2014.6736752 |
4 | EMIL B, LARSSON E G, MARZETTA T L. Massive MIMO: ten myths and one critical question. IEEE Communications Magazine, 2015, 54 (2): 114- 123. |
5 |
LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, 52 (2): 186- 195.
doi: 10.1109/MCOM.2014.6736761 |
6 |
HOYDIS J, TEN BRINK S, DEBBAH M. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need?. IEEE Journal on Selected Areas in Communications, 2013, 31 (2): 160- 171.
doi: 10.1109/JSAC.2013.130205 |
7 | CHAN P W C, LO E S, WANG R R, et al. The evolution path of 4G networks: FDD or TDD?. IEEE Communications Magazine, 2007, 44 (12): 42- 50. |
8 |
NAM Y H, AKIMOTO Y, KIM Y, et al. Evolution of reference signals for LTE advanced systems. IEEE Communications Magazine, 2012, 50 (2): 132- 138.
doi: 10.1109/MCOM.2012.6146492 |
9 |
BERGER C R, WANG Z, HUANG J, et al. Application of compressive sensing to sparse channel estimation. IEEE Communications Magazine, 2010, 48 (11): 164- 174.
doi: 10.1109/MCOM.2010.5621984 |
10 |
DAI L, WANG J, WANG Z, et al. Spectrum and energyefficient OFDM based on simultaneous multichannel reconstruction. IEEE Trans. on Signal Processing, 2013, 61 (23): 6047- 6059.
doi: 10.1109/TSP.2013.2282920 |
11 | BARBOTIN Y, HORMATI A, RANGAN S, et al. Estimation of sparse MIMO channels with common support. IEEE Trans. on Communications, 2011, 60 (12): 3705- 3716. |
12 |
DONOHO D L. Compressed sensing. IEEE Trans. on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582 |
13 | DONOHO D L, ELAD M, TEMLYAKOV V N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. on Information Theory, 2005, 52 (1): 6- 18. |
14 | BARON D, WAKIN M B, DUARTE M F, et al. Distributed compressed sensing. Preprint, 2012, 22 (10): 2729- 2732. |
15 |
TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108 |
16 | DAI W, MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. on Information Theory, 2008, 55 (5): 2230- 2249. |
17 | TROPP J A, GILBERT A C, STRAUSS M J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Processing, 2006, 86 (3): 572- 588. |
18 | GAO X, EDFORS O, RUSEK F, et al. Linear precoding performance in measured very large MIMO channels. Proceeding of IEEE Vehicular Technology Conference, 2011, 1- 5. |
19 |
RAO X, LAU V K N. Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Trans. on Signal Processing, 2014, 62 (12): 3261- 3271.
doi: 10.1109/TSP.2014.2324991 |
20 | CHOI J, LOVE D J, BIDIGARE P. Downlink training techniques for FDD massive MIMO systems: open-Loop and closed-Loop training with memory. IEEE Journal of Selected Topics in Signal Processing, 2013, 8 (5): 802- 814. |
21 | SHEN J C, ZHANG J, ALSUSA E, et al. Compressed CSI acquisition in FDD massive MIMO: how much training is needed? IEEE Trans. on Wireless Communications, 2016, 15 (6): 4145- 4156. |
22 | MASOOD M, AFIFY L H, AL-NAFFOURI T Y. Efficient coordinated recovery of sparse channels in massive MIMO. IEEE Trans. on Signal Processing, 2014, 63 (1): 104- 118. |
23 |
BEN-HAIM Z, ELDAR Y C. Near-oracle performance of greedy block-sparse estimation techniques from noisy measurements. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (5): 1032- 1047.
doi: 10.1109/JSTSP.2011.2160250 |
24 |
HOU W, LIM C W. Structured compressive channel estimation for large-scale MISO-OFDM systems. IEEE Communications Letters, 2014, 18 (5): 765- 768.
doi: 10.1109/LCOMM.2014.030714.132630 |
25 |
ZELNIK-MANOR L, ROSENBLUM K, ELDAR Y C. Sensing matrix optimization for block-sparse decoding. IEEE Trans. on Signal Processing, 2011, 59 (9): 4300- 4312.
doi: 10.1109/TSP.2011.2159211 |
26 | QI C, HUANG Y, JIN S, et al. Sparse channel estimation based on compressed sensing for massive MIMO systems. IEEE International Conference on Communications, 2015, 4558- 4563. |
27 |
CHOI J W, SHIM B, CHANG S. Downlink pilot reduction for massive MIMO systems via compressed sensing. IEEE Communications Letters, 2015, 19 (11): 1889- 1892.
doi: 10.1109/LCOMM.2015.2474398 |
28 |
ZHANG W, XIA X G, CHING P C. Optimal training and pilot pattern design for OFDM systems in Rayleigh fading. IEEE Trans. on Broadcasting, 2006, 52 (4): 505- 514.
doi: 10.1109/TBC.2006.884001 |
29 |
XIA P, ZHOU S, GIANNAKIS G B. Achieving the Welch bound with difference sets. IEEE Trans. on Information Theory, 2005, 51 (5): 1900- 1907.
doi: 10.1109/TIT.2005.846411 |
30 |
CHEN J C, WEN C K, TING P. An efficient pilot design scheme for sparse channel estimation in OFDM systems. IEEE Communications Letters, 2013, 17 (7): 1352- 1355.
doi: 10.1109/LCOMM.2013.051313.122933 |
31 |
HE X, SONG R, ZHU W P. Pilot Allocation for distributed-compressed-sensing-based sparse channel estimation in MIMO OFDM Systems. IEEE Trans. on Vehicular Technology, 2016, 65 (5): 2990- 3004.
doi: 10.1109/TVT.2015.2441743 |
32 |
GAO Z, DAI L, DAI W, et al. Structured compressive sensing based spatio temporal joint channel estimation for FDD massive MIMO. IEEE Trans. on Communication, 2016, 64 (2): 601- 617.
doi: 10.1109/TCOMM.2015.2508809 |
33 |
LEE D. MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit. IEEE Communications Letters, 2016, 20 (10): 2115- 2118.
doi: 10.1109/LCOMM.2016.2594059 |
34 | KAY S M. Fundamentals of statistical signal processing, volumn I: estimation theory. New Jersey, USA: Prentice-Hall, 1993. |
35 |
BEN-HAIM Z, ELDAR Y C. The Cramér-Rao bound for estimating a sparse parameter vector. IEEE Trans. on Signal Processing, 2010, 58 (6): 3384- 3389.
doi: 10.1109/TSP.2010.2045423 |
36 | DEB K. Multi-objective optimisation using evolutionary algorithms: an introduction. New York: Wiley, 2001. |
37 | RUDOLPH G. Convergence analysis of canonical genetic algorithms. IEEE Trans. on Neural Networks, 1994, 5 (1): 95- 101. |
[1] | Yumeng SU, Hongyuan GAO, Shibo ZHANG. Energy-efficient resource management for CCFD massive MIMO systems in 6G networks [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 877-886. |
[2] | Junqiu ZHANG, Yong WANG, Xiaofei LU. Distributed inverse synthetic aperture radar imaging of ship target with complex motion [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1325-1337. |
[3] | Zhiyuan SHEN, Qianqian WANG, Xinmiao CHENG. A sparsity adaptive compressed signal reconstruction based on sensing dictionary [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1345-1353. |
[4] | Ruifeng FAN, Xunhe YIN, Zhenfei LIU, Hak Keung LAM. Compensated methods for networked control system with packet drops based on compressed sensing [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1539-1556. |
[5] | Xiangyang LIU, Bingpeng ZHANG, Wei CAO, Wenjia XIE. Sparse three-dimensional imaging for forward-looking array SAR using spatial continuity [J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 417-424. |
[6] | Shuzhen WANG, Yang FANG, Jin'gang ZHANG, Mingshi LUO, Qing LI. Near-field 3D imaging approach combining MJSR and FGG-NUFFT [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1096-1109. |
[7] | Jiansheng HU, Zuxun SONG, Shuxia GUO, Qian ZHANG, Dongdong SHUI. Sparse channel recovery with inter-carrier interference self-cancellation in OFDM [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 676-683. |
[8] | Mingjiu Lyu, Shaodong Li, Wenfeng Chen, Jun Yang, and Xiaoyan Ma. Fast ISAR imaging method based on scene segmentation [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1078-1088. |
[9] | Yang Fang, Baoping Wang, Chao Sun, Zuxun Song, and Shuzhen Wang. Near field 3-D imaging approach for joint high-resolution imaging and phase error correction [J]. Systems Engineering and Electronics, 2017, 28(2): 199-211. |
[10] | Lin Zhang and Yicheng Jiang. Imaging algorithm of multi-ship motion target based on compressed sensing [J]. Systems Engineering and Electronics, 2016, 27(4): 790-. |
[11] | Xiaoping Shi and Jie Zhang. Reconstruction and transmission of astronomical image based on compressed sensing [J]. Systems Engineering and Electronics, 2016, 27(3): 680-690. |
[12] | Jihong Liu, Shaokun Xu, Xunzhang Gao, and Xiang Li. Novel imaging methods of stepped frequency radar based on compressed sensing [J]. Journal of Systems Engineering and Electronics, 2012, 23(1): 47-56. |
[13] | Xiaoping Zhou, Yong Fang, and Min Wang. Compressed sensing based channel estimation for fast fading OFDM systems [J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 550-556. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||