1 |
REIF K, GUNTHER S, YAZ E, et al. Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans. on Automatic Control, 1999, 44(4): 714-728.
|
2 |
JULIER S, UHLMANN J, DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. on Automatic Control, 2000, 45(3): 477-482.
|
3 |
XIONG K, ZHANG H Y, CHAN C W. Performance evaluation of UKF-based nonlinear filtering. Automatica, 2006, 42 (2): 261- 270.
doi: 10.1016/j.automatica.2005.10.004
|
4 |
ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. on Signal Processing, 2002, 50(2): 174-188.
|
5 |
SPEEKENBRINK M. A tutorial on particle filters. Journal of Mathematical Psychology, 2016, 73 (8): 140- 152.
|
6 |
OH S, HAHN M, KIM J. Dynamic EKF-based SLAM for autonomous mobile convergence platforms. Multimedia Tools and Applications, 2015, 74 (16): 6413- 6430.
doi: 10.1007/s11042-014-2093-0
|
7 |
SINGH A K, PAL B C. Decentralized dynamic state estimation in power systems using unscented transformation. IEEE Trans. on Power Systems, 2014, 29(2): 794-804.
|
8 |
FOO P H. Combining the interacting multiple model method with particle filters for manoeuvring target tracking with a multistatic radar system. IET Radar, Sonar & Navigation, 2011, 5 (7): 697- 706.
|
9 |
ARASARATNAM I, HAYKIN S. Cubature Kalman filters. IEEE Trans. on Automatic Control, 2009, 54(6): 1254-1269.
|
10 |
ARASARATNAM I, HAYKIN S, HURD T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Trans. on Signal Processing, 2010, 58(10): 4977-4993.
|
11 |
JIA B, XIN M, CHENG Y. High-degree cubature Kalman filter. Automatica, 2013, 49 (2): 510- 518.
doi: 10.1016/j.automatica.2012.11.014
|
12 |
GE Q B, XU D X, WEN C L. Cubature information filters with correlated noises and their applications in decentralized fusion. Signal Processing, 2014, 94 (1): 434- 444.
|
13 |
ZAREI J, SHOKRI E. Nonlinear and constrained state estimation based on the cubature Kalman filter. Industrial & Engineering Chemistry Research, 2014, 53 (10): 3938- 3949.
doi: 10.1021/ie4020843
|
14 |
ZHANG L J, YANG H B, LU H P, et al. Cubature Kalman filtering for relative spacecraft attitude and position estimation. Acta Astronautica, 2014, 105 (1): 254- 264.
doi: 10.1016/j.actaastro.2014.09.007
|
15 |
ZHU W, WANG W, YUAN G N. An improved interact ing multiple model filtering algorithm based on the cubature Kalman filter for maneuvering target tracking. Sensors, 2016, 16 (6): 805.
doi: 10.3390/s16060805
|
16 |
WU H, CHEN S X, YANG B F, et al. Robust derivative-free cubature Kalman filter for bearings-only tracking. Journal of Guidance, Control, and Dynamics, 2016, 39 (8): 1866- 1871.
doi: 10.2514/1.G001686
|
17 |
ZHAO Y W. Performance evaluation of cubature Kalman filter in a GPS/IMU tightly-coupled navigation system. Signal Processing, 2016, 119 (C): 67- 79.
|
18 |
ZAREI J, SHOKRI E. Convergence analysis of non-linear filtering based on cubature Kalman filter. IET Science, Measurement & Technology, 2014, 9 (3): 294- 305.
|
19 |
XU B, ZHANG P, WEN H Z, et al. Stochastic stability and performance analysis of cubature Kalman filter. Neurocomputing, 2016, 186 (4): 218- 227.
|
20 |
DONG H L, WANG Z D, HO D W C, et al. Varianceconstrained H∞ filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finitehorizon case. IEEE Trans. on Signal Processing, 2010, 58(5): 2534-2543.
|
21 |
SHI J, LI Y Y, QI G Q, et al. Extended target tracking filter with intermittent observations. IET Signal Processing, 2016, 10 (6): 592- 602.
|
22 |
ZHANG W A, YU L, SONG H B. H∞ filtering of networked discrete-time systems with random packet losses. Information Sciences, 2009, 179 (22): 3944- 3955.
doi: 10.1016/j.ins.2009.07.016
|
23 |
SUN S L, MA J. Linear estimation for networked control systems with random transmission delays and packet dropouts. Information Sciences, 2014, 269 (4): 349- 365.
|
24 |
SINOPOLI B, SCHENATO L, FRANCESCHETTI M, et al. Kalman filtering with intermittent observations. IEEE Trans. on Automatic Control, 2004, 49(9): 1453-1464.
|
25 |
HUANG M Y, DEY S. Stability of Kalman filtering with Markovian packet losses. Automatica, 2007, 43 (4): 598- 607.
doi: 10.1016/j.automatica.2006.10.023
|
26 |
ROHR E R, MARELLI D, FU M. Kalman filtering with intermittent observations: on the boundedness of the expected error covariance. IEEE Trans. on Automatic Control, 2014, 59(10): 2724-2738.
|
27 |
KLUGE S, REIF K, BROKATE M. Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Trans. on Automatic Control, 2010, 55(2): 514-518.
|
28 |
WANG G, CHEN J, SUN J. Stochastic stability of extended filtering for non-linear systems with measurement packet losses. IET Control Theory & Applications, 2013, 7 (17): 2048- 2055.
|
29 |
LI L, XIA Y Q. Stochastic stability of the unscented Kalman filter with intermittent observations. Automatica, 2012, 48 (5): 978- 981.
doi: 10.1016/j.automatica.2012.02.014
|
30 |
FOLETTO T D C, MORENO U F. On the performance of unscented Kalman filter with intermittent observations. Proc. of the 12th IEEE International Conference on Industrial Informatics, 2014: 660-665.
|
31 |
LI L, XIA Y Q. Unscented Kalman filter over unreliable communication networks with Markovian packet dropouts. IEEE Trans. on Automatic Control, 2013, 58(12): 3224-3230.
|
32 |
BOUTAYEB M, AUBRY D. A strong tracking extended Kalman observer for nonlinear discrete-time systems. IEEE Trans. on Automatic Control, 1999, 44(8): 1550-1556.
|