Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (4): 780-788.doi: 10.21629/JSEE.2018.04.12
• Systems Engineering • Previous Articles Next Articles
Ye CHEN*(), Liangpeng WU(), Bo LU()
Received:
2017-10-18
Online:
2018-08-01
Published:
2018-08-30
Contact:
Ye CHEN
E-mail:chenye@nuaa.edu.cn;1017379408@qq.com;lubo1991@163.com
About author:
CHEN Ye was born in 1974. He received his Ph.D. degree from University of Waterloo, Canada. He is a professor with the College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China. He has published papers in journals including European Journal of Operational Research, Computers and Operations Research, Decision Support Systems, IEEE Transactions on Systems, Man, and Cybernetics, Socio-Economic Planning Sciences, and Journal of Systems Science and Systems Engineering. His research interests include multiple criteria decision analysis, efficiency analysis, and conflict analysis. E-mail: Supported by:
Ye CHEN, Liangpeng WU, Bo LU. Data envelopment analysis procedure with two non-homogeneous DMU groups[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 780-788.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Annual input and output data for 28 departments in a university"
Division | Department | ESP | NFP | EHP | JP | AC | NAW | SCA |
G1 | A | 54 284 | 1 934 | 359 | 1 794 | 91 | 5 | 3 |
B | 48 879 | 454 | 1 250 | 744 | 26 | 0 | 0 | |
C | 96 830 | 1 269 | 285 | 800 | 49 | 5 | 2 | |
D | 54 595 | 790 | 765 | 470 | 22 | 2 | 2 | |
F | 46 512 | 1 122 | 962 | 1 481 | 39 | 0 | 5 | |
G | 53 834 | 1 798 | 743 | 865 | 90 | 1 | 3 | |
J | 53 207 | 1 501 | 686 | 1 624 | 91 | 1 | 1 | |
H | 90 563 | 487 | 628 | 585 | 50 | 4 | 3 | |
I | 72 830 | 845 | 1 252 | 1 287 | 20 | 4 | 0 | |
J | 53 207 | 1 501 | 686 | 1 624 | 91 | 1 | 1 | |
K | 90 563 | 487 | 628 | 585 | 50 | 4 | 3 | |
L | 53 271 | 641 | 366 | 1 475 | 85 | 3 | 2 | |
M | 47 361 | 1 685 | 1 287 | 1 722 | 31 | 0 | 4 | |
N | 70 816 | 861 | 1 056 | 1 201 | 77 | 2 | 4 | |
G2 | a | 51 629 | 872 | 4 283 | 902 | 25 | 3 | 5 |
b | 23 814 | 240 | 3 514 | 349 | 28 | 2 | 3 | |
c | 21 179 | 609 | 2 658 | 536 | 22 | 0 | 9 | |
d | 32 474 | 732 | 5 904 | 567 | 27 | 1 | 6 | |
e | 47 789 | 974 | 5 744 | 720 | 52 | 4 | 7 | |
f | 53 584 | 263 | 2 045 | 651 | 28 | 0 | 8 | |
g | 49 254 | 223 | 5 775 | 624 | 33 | 2 | 10 | |
h | 30 295 | 682 | 2 140 | 885 | 46 | 5 | 9 | |
i | 34 424 | 259 | 2 283 | 339 | 58 | 2 | 3 | |
j | 59 245 | 251 | 3 816 | 854 | 32 | 5 | 8 | |
k | 37 524 | 463 | 3 156 | 596 | 38 | 4 | 3 | |
l | 55 776 | 904 | 2 794 | 698 | 49 | 1 | 7 | |
m | 27 032 | 282 | 4 515 | 793 | 31 | 0 | 5 | |
n | 30 359 | 981 | 5 413 | 368 | 47 | 1 | 4 |
Table 2
Calculated efficiency results for all DMUs"
Department | $e_{{{{\rm{or}}}}}^{{{{\rm{or}}}}} $ | $e_{{{{\rm{and}}}}}^{{{{\rm{or}}}}} $ | $e_{{{{\rm{or}}}}}^{{{{\rm{and}}}}} $ | $e_{{{{\rm{and}}}}}^{{{{\rm{and}}}}} $ | $e_{{{{\rm{1}}}}}^{{{{\rm{1}}}}} $ | $e_{{{{\rm{2}}}}}^{{{{\rm{2}}}}} $ |
A | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
B | 0.665 | 0.665 | 0.573 | 0.573 | 0.573 | 0.665 |
C | 1.000 | 1.000 | 0.439 | 0.439 | 0.418 | 1.000 |
D | 0.538 | 0.520 | 0.342 | 0.342 | 0.342 | 0.538 |
F | 1.000 | 0.989 | 0.960 | 0.960 | 0.960 | 1.000 |
G | 0.995 | 0.477 | 0.986 | 0.463 | 0.978 | 0.677 |
H | 1.000 | 0.995 | 0.556 | 0.556 | 0.556 | 1.000 |
I | 0.796 | 0.796 | 0.712 | 0.712 | 0.712 | 0.796 |
J | 1.000 | 0.943 | 1.000 | 0.901 | 1.000 | 0.943 |
K | 1.000 | 1.000 | 0.588 | 0.494 | 0.588 | 1.000 |
L | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
M | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
N | 0.811 | 0.609 | 0.689 | 0.601 | 0.673 | 0.805 |
a | 0.605 | 0.605 | 0.605 | 0.605 | 0.605 | 0.605 |
b | 0.915 | 0.764 | 0.915 | 0.764 | 0.915 | 0.764 |
c | 1.000 | 0.735 | 1.000 | 0.735 | 0.775 | 1.000 |
d | 0.606 | 0.554 | 0.606 | 0.554 | 0.567 | 0.606 |
e | 0.687 | 0.544 | 0.687 | 0.544 | 0.683 | 0.544 |
f | 1.000 | 0.871 | 0.833 | 0.758 | 0.796 | 1.000 |
g | 1.000 | 0.838 | 1.000 | 0.838 | 0.974 | 1.000 |
h | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
i | 1.000 | 0.587 | 1.000 | 0.587 | 1.000 | 0.587 |
j | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
k | 0.926 | 0.887 | 0.926 | 0.887 | 0.926 | 0.887 |
l | 0.633 | 0.423 | 0.576 | 0.417 | 0.529 | 0.595 |
m | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
n | 0.942 | 0.369 | 0.942 | 0.369 | 0.909 | 0.421 |
Table 3
Ranks of all DMUs"
Department | $e_{{{{\rm{or}}}}}^{{{{\rm{or}}}}} $ | $e_{{{{\rm{and}}}}}^{{{{\rm{or}}}}} $ | $e_{{{{\rm{or}}}}}^{{{{\rm{and}}}}} $ | $e_{{{{\rm{and}}}}}^{{{{\rm{and}}}}} $ | $e_{{{{\rm{1}}}}}^{{{{\rm{1}}}}} $ | $e_{{{{\rm{2}}}}}^{{{{\rm{2}}}}} $ |
A | 1 | 1 | 1 | 1 | 1 | 1 |
B | 9 | 11 | 15 | 13 | 15 | 8 |
C | 1 | 1 | 18 | 20 | 20 | 1 |
D | 14 | 18 | 19 | 23 | 21 | 15 |
F | 13 | 17 | 17 | 17 | 19 | 14 |
G | 1 | 3 | 3 | 2 | 4 | 1 |
H | 2 | 19 | 2 | 19 | 2 | 7 |
I | 7 | 8 | 8 | 9 | 10 | 5 |
J | 1 | 4 | 1 | 3 | 1 | 2 |
K | 1 | 1 | 13 | 18 | 14 | 1 |
L | 1 | 1 | 1 | 1 | 1 | 1 |
M | 1 | 1 | 1 | 1 | 1 | 1 |
N | 6 | 12 | 9 | 11 | 12 | 4 |
a | 12 | 13 | 12 | 10 | 13 | 10 |
b | 5 | 9 | 6 | 6 | 6 | 6 |
c | 10 | 1 | 1 | 8 | 9 | 1 |
d | 11 | 15 | 11 | 15 | 16 | 9 |
e | 8 | 16 | 10 | 16 | 11 | 13 |
f | 1 | 6 | 7 | 7 | 8 | 1 |
g | 1 | 7 | 1 | 5 | 3 | 1 |
h | 1 | 1 | 1 | 1 | 1 | 1 |
i | 1 | 14 | 1 | 12 | 1 | 12 |
j | 1 | 1 | 1 | 1 | 1 | 1 |
k | 4 | 5 | 5 | 4 | 5 | 3 |
l | 10 | 20 | 14 | 21 | 18 | 11 |
m | 1 | 1 | 1 | 1 | 1 | 1 |
n | 3 | 21 | 4 | 22 | 7 | 16 |
Table 6
Integrated results under the three attitude aggregations applying the OWA operator"
Department | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ | $G$ | $H$ | $I$ | $J$ | $K$ | $L$ | $M$ | $N$ | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ | $j$ | $k$ | $l$ | $m$ | $n$ |
$OWA_{{{{\mathit{\boldsymbol{Q}}}}}_1}^j $ | 1 | 0.665 | 1 | 0.538 | 0.540 | 1 | 0.986 | 1 | 0.796 | 1 | 1 | 1 | 1 | 0.805 | 0.605 | 0.915 | 1 | 0.606 | 0.687 | 1 | 1 | 1 | 1 | 1 | 0.926 | 0.595 | 1 | 0.942 |
$OWA_{{{{\mathit{\boldsymbol{Q}}}}}_2}^j $ | 1 | 0.573 | 0.439 | 0.342 | 0.498 | 0.96 | 0.477 | 0.556 | 0.712 | 0.943 | 0.588 | 1 | 1 | 0.609 | 0.605 | 0.764 | 0.735 | 0.554 | 0.544 | 0.796 | 0.838 | 1 | 0.587 | 1 | 0.887 | 0.423 | 1 | 0.369 |
$OWA_{{{{\mathit{\boldsymbol{Q}}}}}_3}^j $ | 1 | 0.619 | 0.720 | 0.435 | 0.519 | 0.977 | 0.780 | 0.777 | 0.754 | 0.971 | 0.794 | 1 | 1 | 0.694 | 0.605 | 0.840 | 0.878 | 0.583 | 0.615 | 0.875 | 0.953 | 1 | 0.794 | 1 | 0.907 | 0.531 | 1 | 0.660 |
Table 7
Result comparison of different DEA approaches to address the case study"
Department | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ | $G$ | $H$ | $I$ | $J$ | $K$ | $L$ | $M$ | $N$ | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ | $j$ | $k$ | $l$ | $m$ | $n$ | |
Traditional method | 1 | 0.665 | 1 | 0.538 | 0.540 | 1 | 0.986 | 1 | 0.796 | 1 | 1 | 1 | 1 | 0.805 | 0.605 | 0.915 | 1 | 0.606 | 0.687 | 1 | 1 | 1 | 1 | 1 | 0.926 | 0.595 | 1 | 0.942 | |
Data missing | Zero | 1 | 0.712 | 0.891 | 0.610 | 0.511 | 0.991 | 0.978 | 0.880 | 0.989 | 1 | 1 | 1 | 1 | 0.681 | 0.304 | 0.427 | 0.330 | 0.237 | 0.220 | 0.796 | 1 | 0.394 | 0.388 | 1 | 0.434 | 0.232 | 0.826 | 0.116 |
method | Average | 1 | 0.864 | 0.630 | 0.738 | 0.705 | 1 | 0.987 | 0.654 | 0.795 | 1 | 0.594 | 1 | 1 | 0.823 | 0.644 | 0.970 | 0.919 | 0.680 | 0.808 | 0.932 | 1 | 1 | 0.938 | 1 | 0.822 | 0.758 | 0.929 | 0.524 |
Our proposed method | $OWA_{{{{\mathit{\boldsymbol{Q}}}}}_1}^j $ | 1 | 0.665 | 1 | 0.538 | 0.540 | 1 | 0.986 | 1 | 0.796 | 1 | 1 | 1 | 1 | 0.805 | 0.605 | 0.915 | 1 | 0.606 | 0.687 | 1 | 1 | 1 | 1 | 1 | 0.926 | 0.595 | 1 | 0.942 |
$OWA_{{{{\mathit{\boldsymbol{Q}}}}}_2}^j $ | 1 | 0.573 | 0.439 | 0.342 | 0.498 | 0.96 | 0.477 | 0.556 | 0.712 | 0.943 | 0.588 | 1 | 1 | 0.609 | 0.605 | 0.764 | 0.735 | 0.554 | 0.554 | 0.796 | 0.838 | 1 | 0.587 | 1 | 0.887 | 0.423 | 1 | 0.369 | |
$OWA_{{{{\mathit{\boldsymbol{Q}}}}}_3}^j $ | 1 | 0.619 | 0.720 | 0.435 | 0.519 | 0.977 | 0.780 | 0.777 | 0.754 | 0.971 | 0.794 | 1 | 1 | 0.694 | 0.605 | 0.840 | 0.878 | 0.583 | 0.615 | 0.875 | 0.953 | 1 | 0.794 | 1 | 0.907 | 0.531 | 1 | 0.660 |
1 |
FARRELL M J. The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 1957, 120 (3): 253- 290.
doi: 10.2307/2343100 |
2 | LERTXUNDI A. Transfer of HRM practices to subsidiaries: importance of the efficiency of the HRM system. Management Research, 2008, 6 (1): 63- 73. |
3 | ZUCKERMAN S, HADLEY J, IEZZONI L. Measuring hospital efficiency with frontier cost functions. Journal of Health Economics, 1994, 13 (3): 255- 280. |
4 |
SONG F, GUAN Y, SONG M L. Environmental efficiency, advances in environmental technology and total factor of environmental productivity of China. Kybernetes, 2013, 42 (6): 943- 954.
doi: 10.1108/K-02-2013-0025 |
5 | SELLERS-RUBIO R, MAS-RUIZ F J, CASADO-DÍAZ A B. University efficiency: complementariness versus trade-off between teaching, research and administrative activities. Higher Education Quarterly, 2010, 64 (4): 373- 391. |
6 | CHARNES A, COOPER W W, RODES E. Measuring the efficiency of decision making units. European Journal of Operational Research, 1978, 2 (6): 429- 444. |
7 |
BANKER R D, CHARNES A, COOPER W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 1984, 30 (9): 1078- 1092.
doi: 10.1287/mnsc.30.9.1078 |
8 | COOK W D, TONE K, ZHU J. Data envelopment analysis: prior to choosing a model. Omega, 2014, 44 (2): 1- 4. |
9 | YANG F, YANG C, LIANG L. New approach to determine common weights in DEA efficiency evaluation model. Journal of Systems Engineering and Electronics, 2010, 21 (4): 609- 615. |
10 | WANG K, WEI F. Robust data envelopment analysis based MCDM with the consideration of uncertain data. Journal of Systems Engineering and Electronics, 2010, 21 (6): 981- 989. |
11 |
GHOLAMI K, BEIGI Z G, HADIVENCHEH A. The allocation of sub-decision making units to parallel fuzzy network systems. Kybernetes, 2014, 43 (7): 1079- 1097.
doi: 10.1108/K-02-2013-0016 |
12 | ZHA Y, WANG J, ZHAO L. Efficiency improvement based upon overall value judgment and weight restriction. Kybernetes, 2015, 44 (5): 721- 738. |
13 | SEIFORD L M, THRALL R M. Recent developments in DEA: the mathematical programming approach to frontier analysis. Journal of Econometrics, 2004, 46 (1): 7- 38. |
14 | KANG H, LEE A H I. A new supplier performance evaluation model: a case study of integrated circuit (IC) packaging companies. Kybernetes, 2010, 39 (1): 37- 54. |
15 | BI G B, WANG H L, DING J J. Integration of α-fairness with DEA based resource allocation model. Journal of Systems Engineering and Electronics, 2014, 25 (6): 1027- 1036. |
16 | SAEN R F, MEMARIANI A, LOTFI F H. Determining relative efficiency of slightly non-homogeneous decision making units by data envelopment analysis: a case study in IROST. Applied Mathematics & Computation, 2005, 165 (2): 313- 328. |
17 | BOUGNOL M L, DULA J H. Validating DEA as a ranking tool: an application of DEA to assess performance in higher education. Annals of Operations Research, 2006, 145 (1): 339- 365. |
18 | Maclean's magazine, Canadian university ranking, http://www.macleans.ca/education/university-rankings-2016C, accessed on June 1, 2017. |
19 | LI W H, LIANG L, COOK W D. DEA models for nonhomogeneous DMUs with different input configurations. European Journal of Operational Research, 2016, 254 (3): 946- 956. |
20 | COOK W D, HARRISON J, IMANIRAD R. Data envelopment analysis with non-homogeneous DMUs. Operations Research, 2013, 61 (3): 666- 676. |
21 | FRIEDMAN M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Publications of the American Statistical Association, 1939, 32 (200): 675- 701. |
22 | YAGER R R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. Readings in Fuzzy Sets for Intelligent Systems, 1993, 18 (1): 80- 87. |
23 | TORRA V, NARUKAWA Y. Modeling decisions-information fusion and aggregation operators. Cognitive Technologies, 2007, 61 (12): 1090- 1093. |
24 | LIU X. On the methods of decision making under uncertainty with probability information. International Journal of Intelligent Systems, 2004, 19 (12): 1217- 1238. |
25 | BADELLO M R, MOSHIRI B, ARAABI B N. A novel detection and navigation approach based on OWA fusion method. Sensor Review, 2011, 31 (4): 328- 340. |
26 | YAGER R R. New modes of OWA information fusion. International Journal of Intelligent Systems, 2015, 13 (7): 661- 681. |
27 | GAO C L, LI C Q. Improvement of cross-efficiency ranking methods. Systems Engineering, 2003, 21 (3): 81- 86. |
[1] | Feng Yang, Fei Du, Liang Liang, and Liuyi Ling. Full ranking procedure based on best and worst frontiers [J]. Systems Engineering and Electronics, 2015, 26(3): 514-522. |
[2] | Gongbing Bi, Hailing Wang, and Jingjing Ding. Integration of α-fairness with DEA based resource allocation model [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1027-1036. |
[3] | Jiefang Wang and Sifeng Liu. Prediction of efficient outputs based on GM (1, N) model and weak DEA efficiency [J]. Journal of Systems Engineering and Electronics, 2011, 22(6): 933-939. |
[4] | Jos′e M. Merig′o, Anna M. Gil-Lafuente, Ligang Zhou, and Huayou Chen. Generalization of the linguistic aggregation operator and its application in decision making [J]. Journal of Systems Engineering and Electronics, 2011, 22(4): 593-603. |
[5] | Jie Wu, Jiasen Sun, Yong Zha, and Liang Liang. Ranking approach of cross-efficiency based on improved TOPSIS technique [J]. Journal of Systems Engineering and Electronics, 2011, 22(4): 604-608. |
[6] | Ke Wang, and Fajie Wei. Robust data envelopment analysis based MCDM with the consideration of uncertain data [J]. Journal of Systems Engineering and Electronics, 2010, 21(6): 981-989. |
[7] | Feng Yang, Chenchen Yang, Liang Liang, and Shaofu Du. New approach to determine common weights in DEA efficiency evaluation model [J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 609-615. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||