1 |
LEE K M, DAN E E, TIAN H. Design and control of a spherical air-bearing system for multi-D.O.F. ball-joint-like actuators. Mechatronics, 2002, 13 (2): 175- 194.
|
2 |
LI X, HORIE M, KAGAWA T. Study on the basic characteristics of a vortex bearing element. International Journal of Advanced Manufacturing Technology, 2012, 64 (1-4): 1- 12.
|
3 |
CUI P L, ZHANG H J, YAN N, et al. Performance testing of a magnetically suspended double gimbal control moment gyro based on the single axis air bearing table. Sensors, 2012, 12 (7): 9129- 9145.
doi: 10.3390/s120709129
|
4 |
INUMOH L O, FORSHAW J L, HORRI N M. Tilted wheel satellite attitude control with air-bearing table experimental results. Acta Astronautica, 2015, 117, 414- 429.
doi: 10.1016/j.actaastro.2015.09.007
|
5 |
SCHWARTZ J L, PECK M A, HALL C D. Historical review of air-bearing spacecraft simulators. Journal of Guidance Control and Dynamics, 2003, 26 (4): 513- 522.
doi: 10.2514/2.5085
|
6 |
CHESI S, GONG Q, PELLEGRINI V, et al. Automatic mass balancing of a spacecraft three-axis simulator: analysis and experimentation. Journal of Guidance Control and Dynamics, 2014, 37 (1): 197- 206.
doi: 10.2514/1.60380
|
7 |
XU Z, QI N, SUN Q, et al. Automatic mass balancing of threeaxis rotational spacecraft simulator. Systems Engineering and Electronics, 2015, 37 (5): 1124- 1132.
|
8 |
LI Y, DING H. A simplified calculation method on the performance analysis of aerostatic thrust bearing with multiple pocketed orifice-type restrictors. Tribology International, 2012, 56 (56): 66- 71.
|
9 |
LO C Y, WANG C C, LEE Y H. Performance analysis of high-speed spindle aerostatic bearings. Tribology International, 2005, 38 (1): 5- 14.
|
10 |
OTSU Y, SOMAYA K, YOSHIMOTO S. High-speed stability of a rigid rotor supported by aerostatic journal bearings with compound restrictors. Tribology International, 2011, 44 (1): 9- 17.
doi: 10.1016/j.triboint.2010.09.007
|
11 |
NEVES M T, SCHWARZ V A, MENON G J. Discharge coefficient influence on the performance of aerostatic journal bearings. Tribology International, 2010, 43 (4): 746- 751.
doi: 10.1016/j.triboint.2009.11.001
|
12 |
MIYATAKE M, YOSHIMOTO S. Numerical investigation of static and dynamic characteristics of aerostatic thrust bearings with small feed holes. Tribology International, 2010, 43 (8): 1353- 1359.
doi: 10.1016/j.triboint.2010.01.002
|
13 |
LIN Z, DONG Y. Balance of single axis air bearing table based on its swing characteristics. Review Science & Technology, 2010, 28 (2): 46- 49.
|
14 |
WANG Z, LI Y, BAO G. Study on the mechanics property of three degrees of freedom air-bearing testbed-compensation for the unbalance torque. Chinese Journal of Mechanical Engineering, 2006, 42 (4): 179- 184.
doi: 10.3901/JME.2006.04.179
|
15 |
LIU J, SUN Y, LU L, et al. Manufacturing errors effects on disturbing torque of aerostatic bearings. Applied Mechanics and Materials, 2009, 16, 505- 509.
|
16 |
LIANG Y, LIU J, SUN Y, et al. Surface roughness effects on vortex torque of air supported gyroscope. Chinese Journal of Aeronautics, 2011, 24 (1): 90- 95.
doi: 10.1016/S1000-9361(11)60011-3
|
17 |
YAO Y, DU J, LIU D, et al. Numerical analysis of manufacturing error influence on vortex torque of externally pressurized gas bearings. Acta Aeronautica et Astronautica Sinica, 2003, 24 (2): 124- 128.
|
18 |
DU J, YAO Y, GAO D, et al. A numericalanalysis of vortex torque of externally pressurized gas journal-thrust bearings. Lubrication Engineering, 2005, (3): 57- 59.
|
19 |
ZHANG Y, SUN N, CAO G. The regularity analysis of low velocity free rotation of single axis air bearing table. Journal of Engineering Design, 2009, 16 (6): 436- 439.
|
20 |
GAO Z, HUAN Y, HAN J. An alternative paradigm for control system design. Proc. of the 40th IEEE Conference on Decision and Control, 2001: 4578-4585.
|