Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (3): 471-482.doi: 10.21629/JSEE.2018.03.04
• Electronics Technology • Previous Articles Next Articles
Wei ZHAO1,*(), Xiaofeng BIAN1(
), Fang HUANG1(
), Jun WANG1(
), Mongi A ABIDI2(
)
Received:
2017-01-24
Online:
2018-06-28
Published:
2018-07-02
Contact:
Wei ZHAO
E-mail:zhaowei203@buaa.edu.cn;xiaofengb@buaa.edu.cn;huangfang@buaa.edu.cn;wj203@buaa.edu.cn;abidi@utk.edu
About author:
ZHAO Wei was born in 1972. She received her B.S., M.S. and Ph.D. degrees, all from School of Automatic Control of Northwestern Polytechnical University, Xi'an, China. Then she did postdoctoral research in Beihang University, and now she is an associate professor there. Her main research interests are digital image processing, automatic target recognition, signal processing in wireless sensor network and information fusion. E-mail: Wei ZHAO, Xiaofeng BIAN, Fang HUANG, Jun WANG, Mongi A ABIDI. Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 471-482.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
PSNR and reconstruction time results by the proposed method with different patch sizes"
Image | Parameter | Patch size | ||||
2×2 | 4×4 | 8×8 | 8×84×4 | 8×84×42×2 | ||
Barbara | PSNR/dB | 27.63 | 27.79 | 27.42 | 27.84 | 27.92 |
128×128 | Time/s | 0.75 | 0.38 | 0.19 | 0.35 | 0.30 |
Cameraman | PSNR/dB | 24.23 | 24.20 | 23.97 | 24.43 | 24.76 |
128×128 | Time/s | 0.63 | 0.34 | 0.17 | 0.29 | 0.25 |
Lena | PSNR/dB | 32.52 | 32.71 | 32.52 | 32.95 | 33.03 |
512×512 | Time/s | 6.08 | 2.36 | 1.28 | 2.27 | 2.12 |
Zebra | PSNR/dB | 27.69 | 27.71 | 26.77 | 28.55 | 28.58 |
391×586 | Time/s | 5.97 | 2.09 | 1.27 | 2.01 | 1.88 |
Monarch | PSNR/dB | 30.60 | 30.78 | 30.46 | 31.16 | 31.80 |
512×768 | Time/s | 9.91 | 3.50 | 1.84 | 3.10 | 2.93 |
Table 2
PSNR and reconstruction time results by the proposed method with different dictionary sizes"
Image | Parameter | Dictionary size | |||
128, 128, 128 | 256, 256, 256 | 512, 512, 512 | 128, 256, 512 | ||
Cameraman | PSNR/dB | 31.76 | 31.91 | 32.02 | 32.00 |
512×512 | Time/s | 1.72 | 1.94 | 2.09 | 1.78 |
Man | PSNR/dB | 28.06 | 28.08 | 28.09 | 28.09 |
512×512 | Time/s | 1.84 | 1.98 | 2.13 | 1.91 |
Monarch | PSNR/dB | 31.74 | 31.80 | 31.89 | 31.87 |
512×768 | Time/s | 2.80 | 2.93 | 3.06 | 2.87 |
Ppt3 | PSNR/dB | 25.13 | 25.23 | 25.48 | 25.48 |
656×529 | Time/s | 2.53 | 2.64 | 2.87 | 2.55 |
Zebra | PSNR/dB | 28.55 | 28.57 | 28.60 | 28.58 |
391×586 | Time/s | 1.73 | 1.88 | 1.98 | 1.80 |
Table 3
PSNR, SSIM and reconstruction time results for 12 test images"
Image | Parameter | Bicubic | ScSR | Fu et al. | He et al. | Yeganli | Our |
Barbara[576×720] | PSNR/dB | 26.25 | 26.72 | 26.64 | 26.84 | 26.89 | 26.79 |
SSIM | 0.753 | 0.772 | 0.777 | 0.786 | 0.789 | 0.785 | |
Time/s | 0.09 | 602.91 | 68.59 | 1157.83 | 60.66 | 3.48 | |
Bridge[512×512] | PSNR/dB | 24.40 | 24.97 | 24.81 | 25.01 | 25.07 | 25.06 |
SSIM | 0.649 | 0.702 | 0.696 | 0.705 | 0.708 | 0.708 | |
Time/s | 0.03 | 404.84 | 44.77 | 749.18 | 38.56 | 2.08 | |
Cameraman[256×256] | PSNR/dB | 23.77 | 24.44 | 24.32 | 24.79 | 24.63 | 24.91 |
SSIM | 0.779 | 0.802 | 0.799 | 0.816 | 0.811 | 0.821 | |
Time/s | 0.02 | 93.09 | 10.67 | 174.53 | 9.28 | 0.75 | |
Flowers[362×500] | PSNR/dB | 27.23 | 28.28 | 27.91 | 28.66 | 28.47 | 28.64 |
SSIM | 0.801 | 0.840 | 0.827 | 0.844 | 0.840 | 0.841 | |
Time/s | 0.06 | 274.56 | 28.58 | 508.23 | 23.30 | 1.31 | |
Foreman[288×352] | PSNR/dB | 31.18 | 32.81 | 32.08 | 33.10 | 33.26 | 33.19 |
SSIM | 0.907 | 0.924 | 0.915 | 0.928 | 0.931 | 0.930 | |
Time/s | 0.03 | 140.43 | 16.27 | 269.69 | 12.45 | 1.02 | |
Lena[256×256] | PSNR/dB | 29.94 | 30.85 | 30.75 | 31.36 | 31.30 | 31.36 |
SSIM | 0.843 | 0.861 | 0.856 | 0.869 | 0.867 | 0.869 | |
Time/s | 0.03 | 90.17 | 9.75 | 172.76 | 7.97 | 0.69 | |
Man[512×512] | PSNR/dB | 27.01 | 27.72 | 27.58 | 28.05 | 27.96 | 28.09 |
SSIM | 0.749 | 0.784 | 0.778 | 0.791 | 0.790 | 0.792 | |
Time/s | 0.05 | 394.50 | 43.34 | 740.72 | 33.25 | 1.91 | |
Monarch[512×768] | PSNR/dB | 29.43 | 30.76 | 30.27 | 31.49 | 31.00 | 31.87 |
SSIM | 0.919 | 0.935 | 0.925 | 0.939 | 0.936 | 0.943 | |
Time/s | 0.08 | 586.23 | 64.45 | 1~117.58 | 50.14 | 2.87 | |
Pepper[512×512] | PSNR/dB | 32.39 | 33.29 | 33.03 | 34.00 | 34.02 | 34.11 |
SSIM | 0.870 | 0.878 | 0.874 | 0.885 | 0.885 | 0.887 | |
Time/s | 0.05 | 391.92 | 42.45 | 742.14 | 33.89 | 1.92 | |
Ppt3[656×529] | PSNR/dB | 27.31 | 24.65 | 24.66 | 25.37 | 25.12 | 25.48 |
SSIM | 0.874 | 0.891 | 0.886 | 0.913 | 0.902 | 0.914 | |
Time/s | 0.09 | 453.03 | 49.98 | 798.99 | 43.19 | 2.55 | |
Zebra[391×586] | PSNR/dB | 26.63 | 28.02 | 27.43 | 28.83 | 28.45 | 28.58 |
SSIM | 0.794 | 0.837 | 0.829 | 0.850 | 0.846 | 0.849 | |
Time/s | 0.05 | 350.36 | 36.59 | 649.20 | 29.20 | 1.80 | |
Comic[361×250] | PSNR/dB | 23.12 | 23.93 | 23.75 | 24.19 | 24.04 | 24.06 |
SSIM | 0.699 | 0.757 | 0.747 | 0.768 | 0.762 | 0.762 | |
Time/s | 0.03 | 115.22 | 13.56 | 240.58 | 15.27 | 0.72 | |
Average | PSNR/dB | 27.09 | 28.04 | 27.77 | 28.47 | 28.35 | 28.51 |
SSIM | 0.803 | 0.832 | 0.826 | 0.841 | 0.838 | 0.842 | |
Time/s | 0.05 | 324.77 | 35.75 | 610.12 | 29.76 | 1.76 |
1 |
ZHU Z, GUO F, YU H, et al. Fast single image superresolution via self-example learning and sparse representation. IEEE Trans. on Multimedia, 2014, 16 (8): 2178- 2190.
doi: 10.1109/TMM.2014.2364976 |
2 |
FU C H, CHEN H, ZHANG H, et al. Single image super resolution based on sparse representation and adaptive dictionary selection. Proc. of the 19th International Conference on Digital Signal Processing, 2014, 449- 453.
doi: 10.1109/ICDSP.2014.6900704 |
3 | VILLENA S, VEGA M, BABACAN S D, et al. Bayesian combination of sparse and non-sparse priors in image super resolution. Digital Signal Processing, 2013, 23 (2): 530- 541. |
4 | HE L, QI H, ZARETZKI R. Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution. Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2013, 345- 352. |
5 | ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations. Proc. of the International Conference on Curves and Surfaces, 2012, 711- 730. |
6 | WANG S L, ZHANG L, LIANG Y, et al. Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, 2216- 2223. |
7 |
DONG W, ZHANG L, SHI G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. on Image Processing, 2011, 20 (7): 1838- 1857.
doi: 10.1109/TIP.2011.2108306 |
8 |
BABACAN S D, MOLINA R, KATSAGGELOS A K. Variational Bayesian super resolution. IEEE Trans. on Image Processing, 2011, 20 (4): 984- 999.
doi: 10.1109/TIP.2010.2080278 |
9 |
YANG J, WRIGHT J, HUANG T, et al. Image super-resolution via sparse representation. IEEE Trans. on Image Processing, 2010, 19 (11): 2861- 2873.
doi: 10.1109/TIP.2010.2050625 |
10 | YANG J, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, 1- 8. |
11 |
HE Y, YAP K H, CHEN L, et al. A nonlinear least square technique for simultaneous image registration and superresolution. IEEE Trans. on Image Processing, 2007, 16 (11): 2830- 2841.
doi: 10.1109/TIP.2007.908074 |
12 | DAI S, HAN M, XU W, et al. Soft edge smoothness prior for alpha channel super resolution. Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007, 1- 8. |
13 |
LI X, ORCHARD M T. New edge-directed interpolation. IEEE Trans. on Image Processing, 2001, 10 (10): 1521- 1527.
doi: 10.1109/83.951537 |
14 | UR H, GROSS D. Improved resolution from subpixel shifted pictures. Cvgip Graphical Models & Image Processing, 1992, 54 (2): 181- 186. |
15 | KEYS R G. Cubic convolution interpolation for digital image processing. IEEE Trans. on Acoustics Speech & Signal Processing, 1982, 29 (6): 1153- 1160. |
16 | YANG C Y, YANG M H. Fast direct super-resolution by simple functions. Proc. of the IEEE International Conference on Computer Vision, 2013, 561- 568. |
17 | YANG J, LIN Z, COHEN S. Fast image super-resolution based on in-place example regression. Proc. of the IEEE Conference on Computer Vision & Pattern Recognition, 2013, 1059- 1066. |
18 | YU J, GAO X, TAO D, et al. A unified learning framework for single image super-resolution. IEEE Trans. on Neural Networks & Learning Systems, 2014, 25 (4): 780- 792. |
19 | ZHU Y, ZHANG Y, YUILLE A L. Single image superresolution using deformable patches. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, 2917- 2924. |
20 | YEGANLI F, NAZZAL M, OZKARAMANLI H. Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness and gradient phase angle. Signal Image & Video Processing, 2015, 9 (1): 285- 293. |
21 | TRINH D H, LUONG M, DIBOS F, et al. Novel examplebased method for super-resolution and denoising of medical images. IEEE Trans. on Image Processing, 2014, 23 (4): 1882- 1895. |
22 |
LIN D, TANG X. Coupled space learning of image style transformation. Proc. of the IEEE International Conference on Computer Vision, 2005, 2, 1699- 1706.
doi: 10.1109/ICCV.2005.65 |
23 | KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2002, 24 (7): 881- 892. |
24 | LEE H, BATTLE A, RAINA R, et al. Efficient sparse coding algorithms. Proc. of the Neural Information Processing Systems, 2007, 721- 728. |
25 | MOORE B. Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. on Automatic Control, 1981, 26 (1): 17- 32. |
26 | ZHOU W, CONRAD B A, RAHIM S H, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. on Image Processing, 2004, 13 (4): 600- 612. |
[1] | Guisheng WANG, Yequn WANG, Shufu DONG, Guoce HUANG. Multiple transformation analysis for interference separation in TDCS [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1064-1078. |
[2] | Yuanrong TIAN, Xing WANG. Learning a discriminative high-fidelity dictionary for single channel source separation [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1097-1110. |
[3] | Jian WANG, Chunxia QIN, Xiufei ZHANG, Ke YANG, Ping REN. A multi-source image fusion algorithm based on gradient regularized convolution sparse representation [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 447-459. |
[4] | Zhigang XU, Qiang MA, Feixiang YUAN. Single color image super-resolution using sparse representation and color constraint [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 266-271. |
[5] | Jian ZHAO, Chao ZHANG, Shunli ZHANG, Tingting LU, Weiwen SU, Jian JIA. Pre-detection and dual-dictionary sparse representation based face recognition algorithm in non-sufficient training samples [J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 196-202. |
[6] | Jingjing Cai, Dan Bao, and Peng Li. DOA estimation via sparse recovering from the smoothed covariance vector [J]. Systems Engineering and Electronics, 2016, 27(3): 555-561. |
[7] | Xiang Wang, Zhitao Huang, and Yiyu Zhou. Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 17-25. |
[8] | Jiajia Zhao, Zhengyuan Tang, Jie Yang, and Erqi Liu. Infrared small target detection using sparse representation [J]. Journal of Systems Engineering and Electronics, 2011, 22(6): 897-904. |
[9] | Yi Qingming. Blind source separation by weighted K-means clustering [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 882-887. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||