Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (3): 462-470.doi: 10.21629/JSEE.2018.03.03
• Electronics Technology • Previous Articles Next Articles
Yuan LIANG*(), Xinyu DA(
), Jialiang WU(
), Ruiyang XU(
), Zhe ZHANG(
), Hujun LIU(
)
Received:
2017-03-17
Online:
2018-06-28
Published:
2018-07-02
Contact:
Yuan LIANG
E-mail:lycrazy0925@163.com;xingjixingzhi681@163.com;shizihemi86@163.com;360474918@qq.com;qhrjztsptkcgdb035@163.com;huiguanzhan914032@163.com
About author:
LIANG Yuan was born in 1989. He received his B.S. degree in information and navigation engineering and M.S. degree in information and communication engineering from Air Force Engineering University, China, in 2012 and 2015, respectively. He is currently pursuing his Ph.D. degree at Institute of Information and Navigation, Air Force Engineering University, Xi'an, China. His research interests include intelligent signal processing, wireless communications, secure communications, optimization and intelligent algorithm. E-mail: Supported by:
Yuan LIANG, Xinyu DA, Jialiang WU, Ruiyang XU, Zhe ZHANG, Hujun LIU. WFRFT modulation recognition based on HOC and optimal order searching algorithm[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 462-470.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Performance comparisons for Algo Ⅰ, Ⅱ, Ⅲ (SNR=0)"
αt | Algo Ⅰ | Algo Ⅱ | Algo Ⅲ | ||||||
n | PSWR | n | PSWR | n | PSWR | ||||
0.87 | 19.960 187 | 0.427 | 6.845 433 | 0.427 | 6.526 315 | 0.057 | |||
0.73 | 19.997 907 | 0.478 | 6.897 489 | 0.478 | 4.469 728 | 0.479 | |||
0.55 | 19.836 134 | 0.476 | 6.762 605 | 0.476 | 4.060 085 | 0.466 | |||
0.35 | 19.854 978 | 0.462 | 6.857 142 | 0.462 | 4.469 248 | 0.439 | |||
0.2 | 19.964 656 | 0.481 | 6.690 228 | 0.481 | 5.542 521 | 0.341 | |||
0.1 | 20.000 000 | 0.467 | 6.777 301 | 0.467 | 7.526 316 | 0.019 |
Table 2
Performance comparisons for Algo Ⅰ, Ⅱ, Ⅲ (SNR=2)"
αt | Algo Ⅰ | Algo Ⅱ | Algo Ⅲ | ||||||
n | PSWR | n | PSWR | n | PSWR | ||||
0.87 | 19.965 066 | 0.687 | 6.598 253 | 0.687 | 9.636 363 | 0.044 | |||
0.73 | 19.992 548 | 0.671 | 6.712 797 | 0.672 | 4.126 865 | 0.67 | |||
0.55 | 19.822 485 | 0.676 | 6.473 372 | 0.676 | 3.770 370 | 0.675 | |||
0.35 | 19.872 807 | 0.684 | 6.682 748 | 0.684 | 4.477 941 | 0.68 | |||
0.2 | 19.975 610 | 0.697 | 6.521 490 | 0.698 | 5.270 566 | 0.547 | |||
0.1 | 19.998 532 | 0.681 | 6.568 281 | 0.681 | 6.454 545 | 0.011 |
Table 3
Performance comparisons for Algo Ⅰ, Ⅱ, Ⅲ (SNR=4)"
αt | Algo Ⅰ | Algo Ⅱ | Algo Ⅲ | ||||||
n | PSWR | n | PSWR | n | PSWR | ||||
0.87 | 19.977 090 | 0.873 | 6.492 554 | 0.873 | 7.789 473 | 0.019 | |||
0.73 | 19.996 499 | 0.857 | 6.548 424 | 0.857 | 4.038 461 | 0.858 | |||
0.55 | 19.846 857 | 0.875 | 6.339 428 | 0.875 | 3.570 285 | 0.875 | |||
0.35 | 19.881 222 | 0.884 | 6.552 036 | 0.884 | 4.420 339 | 0.885 | |||
0.2 | 19.968 160 | 0.848 | 6.366 745 | 0.848 | 5.576 763 | 0.723 | |||
0.1 | 20.000 000 | 0.888 | 6.483 108 | 0.888 | 8.000 000 | 0.002 |
Table 4
Performance comparisons for Algo Ⅰ, Ⅱ, Ⅲ (SNR=6)"
αt | Algo Ⅰ | Algo Ⅱ | Algo Ⅲ | ||||||
n | PSWR | n | PSWR | n | PSWR | ||||
0.87 | 19.977 436 | 0.975 | 6.454 918 | 0.976 | 10.363 636 | 0.011 | |||
0.73 | 19.996 872 | 0.959 | 6.427 528 | 0.959 | 4.010 427 | 0.959 | |||
0.55 | 19.838 710 | 0.961 | 6.247 916 | 0.960 | 3.428 125 | 0.960 | |||
0.35 | 19.886 674 | 0.953 | 6.439 664 | 0.953 | 4.482 686 | 0.953 | |||
0.2 | 19.972 194 | 0.971 | 6.367 662 | 0.971 | 5.434 731 | 0.858 | |||
0.1 | 20.000 000 | 0.960 | 6.407 291 | 0.960 | NaN | 0.000 |
1 | MEI L, SHA X, ZHANG Q. The concepts of hybrid-carrier scheme communication system. Proc. of the 6th International ICST Conference on Communications and Networking, 2011, 26- 33. |
2 | MEI L, SHA X, ZHANG N. Covert communication based on waveform overlay with weighted fractional Fourier transform signals. Proc. of the IEEE International Conference on Wireless Communications, Networking and Information Security, 2010, 472- 475. |
3 | LI T, MEI L, WU X, et al. Anti-interception communication system based on double layers weighted-type fractional Fourier transform. Proc. of the International ICST Conference on Communications and Networking, 2011, 88- 92. |
4 |
FANG X J, SHA X, LI Y. Secret communication using parallel combinatory spreading WFRFT. IEEE Communications Letters, 2015, 19 (1): 62- 65.
doi: 10.1109/LCOMM.2014.2359200 |
5 |
FANG X J, SHA X. Guaranteeing wireless communication secrecy via a WFRFT-based cooperative system. China Communications, 2015, 12 (9): 76- 82.
doi: 10.1109/CC.2015.7275261 |
6 | HUI Y T, LI B B, ZHAO T. 4-weighted fractional Fourier transform over doubly selective channels and optimal order selecting algorithm. Electronics Letters, 2015, 51 (2): 177- 179. |
7 |
WANG Z, MEI L, WANG X. BER analysis of hybrid carrier system based on WFRFT with carrier frequency offset. Electronics Letters, 2015, 51 (21): 1708- 1709.
doi: 10.1049/el.2015.1027 |
8 | MEI L, ZHANG Q Y, SHA X. WFRFT precoding for narrowband interference suppression in dft-based block transmission systems. IEEE Communications Letters, 2013, 14 (10): 1916- 1919. |
9 | HARIPRIYA V S, SEKHAR S, PILLAI S S. Analysis of carrier frequency offset in WFRFT-OFDM systems using MLE. Proc. of the IEEE International Conference on Communication Systems and Networks, 2016, 132- 136. |
10 | MEI L, SHA X, ZHANG N. PAPR of hybrid carrier scheme based on weighted-type fractional Fourier transform. Proc. of the International ICST Conference on Communications and Networking, 2011, 7 (4): 237- 240. |
11 | WANG X, ZHONG W, MEI L. Signal clipping for PAPR in hybrid carrier system based on 4-weighted fractional Fourier transform. Proc. of the 3rd International Conference on Instrumentation, Measurement, Computer, Communication and Control, 2013, 638- 642. |
12 | FANG X J, SHA X, LI Y. MP-WFRFT and constellation scrambling based physical layer security system. China Communications, 2016, 13 (2): 138- 145. |
13 | RAN Q W, ZHAO H, GE G X. Sampling analysis in weighted fractional Fourier transform domain. Proc. of the International Joint Conference on Computational Sciences and Optimization, 2009, 878- 881. |
14 | SHI J, CHI Y G, SHA X, et al. Application of weighted-type fractional Fourier transform in sampling and reconstruction. Journal on Communications, 2010, 31 (4): 88- 93. |
15 | STEBEL J, KRUMNIKL M, MORAVEC P, et al. Neural network classification of SDR signal modulation. Proc. of the IFIP International Conference on Computer Information Systems and Industrial Management, 2016, 160- 171. |
16 | THAKUR P S, MADAN S, MADAN M. Trends in automatic modulation classification for advanced data communication networks. International Journal of Advanced Research in Computer Engineering & Technology, 2015, 4 (2): 496- 507. |
17 |
DOBRE O A, OCTAVIA A, ALI A, et al. Survey of automatic modulation classification techniques: classical approaches and new trends. IET Communications, 2007, 1 (2): 137- 156.
doi: 10.1049/iet-com:20050176 |
18 | HAN G, LI J, LU D. Study of modulation recognition based on HOCs and SVM. Proc. of the IEEE Vehicular Technology Conference, 2004, 898- 902. |
19 | LIU L, XU J. A novel modulation classification method based on high order cumulants. Proc. of the IEEE International Conference on Wireless Communications, Networking and Mobile Computing, 2006, 1- 5. |
20 | AKMOUCHE W. Detection of multicarrier modulations using 4th-order cumulants. Proc. of the IEEE Military Communications Conference, 1999, 432- 436. |
21 | FENG H, MEI L, SHA X, et al. Modulation recognition for hybrid carrier scheme based on weighted-type fractional Fourier transform. Proc. of the 6th ICST Conference on Communications and Networking, 2011, 381- 383. |
22 | FANG X, WU X, ZHANG N, et al. Safeguarding physical layer security using weighted fractional Fourier transform. Proc. of the IEEE Global Communications Conference, 2016, 1- 6. |
23 | SHIH C C. Fractionalization of Fourier transform. Optics Communications, 1995, 118 (5): 495- 498. |
24 |
NIKIAS C L, MENDEL J M. Signal processing with higherorder spectra. IEEE Signal Processing Magazine, 1993, 10 (3): 10- 37.
doi: 10.1109/79.221324 |
25 |
LANG J, TAO R, RAN Q, et al. The multiple-parameter fractional Fourier transform. Science in China Series F: Information Sciences, 2008, 51 (8): 1010- 1024.
doi: 10.1007/s11432-008-0073-6 |
26 |
KIEFER J. Sequential minimax search for a maximum. Proceedings of the American Mathematical Society, 1953, 4 (3): 502- 506.
doi: 10.1090/S0002-9939-1953-0055639-3 |
27 | HEATH M T, MUNSON E M. Scientific computing: an introductory survey. Columbus, OH: McGraw-Hill Higher Education, 2002. |
[1] | Xiaolin Zhang, Jian Chen, and Zhiguo Sun. Modulation recognition of communication signals based on SCHKS-SSVM [J]. Systems Engineering and Electronics, 2017, 28(4): 627-. |
[2] | Faquan Yang, Zan Li, Hongyan Li, Haiyan Huang, and Zhongxian Pan. Method of neural network modulation recognition based on clustering and Polak-Ribiere algorithm [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 742-747. |
[3] | Xiaojing Wang, Ying Xiong, Yunhao Li, and Bin Tang. Modulation recognition of MIMO radar signal based on joint HOS and SNR algorithm [J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 226-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||