1 |
PECHT M. Prognostics and health management of electronics. Hoboken: John Wiley & Sons, 2008.
|
2 |
BARALDI P, MANGILI F, ZIO E. Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data. Reliability Engineering & System Safety, 2013, 112 (2): 94- 108.
|
3 |
SI X S, HU C H, KONG X, et al. A residual storage life prediction approach for systems with operation state switches. IEEE Trans. on Industrial Electronics, 2014, 61(11): 6304-6315.
|
4 |
JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementing conditionbased maintenance. Mechanical Systems and Signal Processing, 2006, 20 (6): 1483- 1510.
|
5 |
ZHANG H, CHEN M, XI X, et al. Remaining useful life prediction for degradation processes with long-range dependence. IEEE Trans. on Reliability, 2017, 66(4): 1368-1379.
|
6 |
KALBFLEISCH J D, PRENTICE R L. The statistical analysis of failure time data. Hoboken: John Wiley & Sons, 2011.
|
7 |
MEEKER W Q, ESCOBAR L A. Statistical methods for reliability data. Hoboken: John Wiley & Sons, 2014.
|
8 |
LEE J, WU F, ZHAO W, et al. Prognostics and health management design for rotary machinery systems -reviews, methodology and applications. Mechanical Systems and Signal Processing, 2014, 42 (1): 314- 334.
|
9 |
SI X S, WANG W, HU C H, et al. Remaining useful life estimation: a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213 (1): 1- 14.
|
10 |
WANG X, GUO B, CHENG Z. Residual life estimation based on bivariate Wiener degradation process with time-scale transformations. Journal of Statistical Computation and Simulation, 2014, 84 (3): 545- 563.
doi: 10.1080/00949655.2012.719026
|
11 |
WANG H K, LI Y F, HUANG H Z, et al. Near-extreme system condition and near-extreme remaining useful time for a group of products. Reliability Engineering & System Safety, 2017, 162, 103- 110.
|
12 |
RODRIGUES L. Remaining useful life prediction for multiple-component systems based on a system-level performance indicator. IEEE/ASME Trans. on Mechatronics, 2018, 23(1): 141-150.
|
13 |
ZHANG H, CHEN M, ZHOU D. Predicting remaining useful life for a multi-component system with public noise. Proc. of the Prognostics and System Health Management Conference, 2016: 1-6.
|
14 |
KALMAN R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82 (1): 35- 45.
|
15 |
DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society-Series B (Methodological), 1977, 39 (1): 1- 38.
|
16 |
DEWAR M, KADIRKAMANATHAN V. A canonical spacetime state space model: state and parameter estimation. IEEE Trans. on Signal Processing, 2007, 55(10): 4862-4870.
|
17 |
SI X S, WANG W, HU C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Trans. on Reliability, 2012, 61(1): 50-67.
|
18 |
NELSEN R B. An introduction to copulas. New York: Springer Science & Business Media, 2007.
|
19 |
SKLAR A. Random variables, joint distribution functions, and copulas. Kybernetika, 1973, 9 (6): 449- 460.
|
20 |
AHMAD J, HARNHIRUN S. Cointegration and causality between exports and economic growth: evidence from the ASEAN countries. The Canadian Journal of Economics/Revue canadienne d'Economique, 1996, 29 (s1): 413- 416.
|
21 |
ENGLE R F, GRANGER C W J. Co-integration and error correction: representation, estimation, and testing. Econometrica: Journal of the Econometric Society, 1987, 55 (2): 251- 276.
doi: 10.2307/1913236
|