1 |
DA F, COSTA L, EVSUKOFF A, et al. Communications in computer and information. Berlin: Springer Verlag, 2011.
|
2 |
GU L, HUANG H L, ZHANG X D. The clustering coefficient and the diameter of small-world networks. Acta Mathematica Sinica, 2013, 29 (1): 199- 208.
doi: 10.1007/s10114-012-0387-6
|
3 |
HUNG J, YEN N, LI K C. Frontier computing. Singapore: Springer Verlag, 2016.
|
4 |
SQUILLERO G, SIM K. Applications of evolutionary computation. Zug: Springer Verlag, 2017.
|
5 |
GAO J, EFRAT A, FEKETE S, et al. Algorithms for sensor systems. Berlin: Springer Verlag, 2015.
|
6 |
YANG J, FANG F, SUN C. Intelligent science and intelligent data engineering. Berlin: Springer Verlag, 2013.
|
7 |
SU X, HE T. Chinese lexical semantics. Zug: Springer Verlag, 2014.
|
8 |
HERNÁNDEZ C B, GITLER I, KLAPP J. High performance computing. Zug: Springer Verlag, 2017.
|
9 |
HOFNER P, MOLLER B. Dijkstra Floyd and Warshall meet Kleene. Formal Aspects of Computing, 2012, 24 (4/6): 459- 476.
|
10 |
CORMEN T H, LEISERSON C E. Introduction to algorithm. London: The MIT Press, 3rd ed 2009.
|
11 |
COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies. Proc. of CAL91-European Conference on Artificial Life, 1991: 134-142.
|
12 |
NI X J, ZHANG N, WANG M J. An MPI based parallel algorithm to calculate the shortest path of CERNET. Computer Engineering and Applications, 2006, 42 (12): 135- 137.
|
13 |
ALBERT R, JEONG H, BARABASI A L. Internet: diameter of the world-wide web. Nature, 1999, 401 (6749): 130- 131.
doi: 10.1038/43601
|
14 |
FAN C, LU L Y. The diameter of sparse random graphs. http://math.ucsd.edu/~fan/dia.pdf.
|
15 |
ALBERT R, JEONG H, BARABASI A L. Error and attack tolerance of complex networks. Nature, 2000, 406 (6794): 378- 382.
doi: 10.1038/35019019
|
16 |
LI Y, SHAN X M, REN Y. Average path length of internet with power law degree distribution. Acta Physica Sinica, 2004, 53 (11): 3695- 3700.
|
17 |
HASSANA S A, HEMEIDAB A M, MAHMOUDA M M M. Performance evaluation of matrix-matrix multiplications using Intel's advanced vector extensions (AVX). Microprocessors and Microsystems, 2016, 47 (B): 369- 374.
|
18 |
STRASSEN V. Gaussian elimination is not optimal. Numerische Mathematik, 1969, 13 (4): 354- 356.
doi: 10.1007/BF02165411
|
19 |
PAN V Y. New combinations of methods for the acceleration of matrix multiplications. Computers & Mathematics with Applications, 1987, 7 (1): 73- 125.
|
20 |
COPPERSMITH D, WINOGRAD S. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 1987, 9 (3): 251- 280.
|
21 |
KHAN A H, AL-MOUHAMED M, FATAYER A, et al. Optimizing the matrix multiplication using Strassen and Winograd algorithms with limited recursions on many-core. International Journal of Parallel Programming, 2016, 44 (4): 801- 830.
doi: 10.1007/s10766-015-0378-1
|
22 |
STOTHERS A J. On the complexity of matrix multiplication. Edinburgh, UK: University of Edinburgh, 2010.
|
23 |
WILLIAMS V V. Multiplying matrices faster than coppersmith-winograd. Proc. of the 44th Annual ACM Symposium on Theory of Computing, 2012: 887-898.
|
24 |
GALL L F. Powers of tensors and fast matrix multiplication. arXiv preprint arXiv, 2014, 1401, 7714.
|
25 |
ZENG X Z. Empirical study of Chinese airline network structure based on complex network theory. Nanjing, China: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
|