Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (1): 166-175.doi: 10.21629/JSEE.2018.01.17
• Control Theory and Application • Previous Articles Next Articles
Lu LIU1(), Liang SHAN1,*(
), Yuewei DAI1(
), Chenglin LIU2(
), Zhidong QI1(
)
Received:
2017-02-22
Online:
2018-02-26
Published:
2018-02-23
Contact:
Liang SHAN
E-mail:18551843710@163.com;shanliang@njust.edu.cn;daiywei@163.com;liucl@jiangnan.edu.cn;qizhidong@sina.com.cn
About author:
LIU Lu was born in 1990. He received his B.S. degree in electrical engineering and automation from University of Jinan in 2013. He is currently a Ph.D. degree candidate in control science and engineering at Nanjing University of Science and Technology. His research interests include servo control system and intelligence control algorithm. E-mail: Supported by:
Lu LIU, Liang SHAN, Yuewei DAI, Chenglin LIU, Zhidong QI. Improved quantum bacterial foraging algorithm for tuning parameters of fractional-order PID controller[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 166-175.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Test results of θ0 with different initial rotation angles"
Algorithm | $\theta _0 $ | Optimal value | Worst value | Average value | Variance |
IQBFO | 0.05π | 1.136 9E?09 | 5.308 6E+01 | 9.783 2E+00 | 5.335 8E+02 |
0.1π | 1.136 9E?09 | 2.293 7E?01 | 1.595 1E?02 | 2.738 1E?03 | |
0.3π | 1.136 9E?09 | 1.648 5E?07 | 9.549 7E?09 | 1.337 1E?15 | |
0.5π | 1.136 9E?09 | 4.286 8E?02 | 1.042 9E?02 | 1.857 9E?04 | |
0.7π | 1.136 9E?09 | 2.082 4E?01 | 6.827 4E?02 | 5.795 8E?03 | |
0.9π | 1.136 9E?09 | 4.102 7E?01 | 7.175 8E?02 | 1.348 1E?02 | |
0.11π | 1.136 9E?09 | 3.754 5E?01 | 7.623 3E?02 | 1.519 1E?02 |
Table 2
Basic information of benchmark functions"
Function | Mathematical representation | Range of search | Optimal value |
Griewank | $f_1 (x) = { }\sum\limits_{i = 1}^D {\frac{x_i^2 }{4\; 000}}-\prod\limits_{i = 1}^D {\cos (\frac{x_i }{\sqrt i })} +1$ | $[-100, 100]^D$ | 0 |
Ackley | $f_2 (x) = 20+{{{\rm{e}}}}-{ }20{{{\rm{e}}}}^{-\frac{1}{5}\sqrt{\frac{1}{D}\sum\limits_{i = 1}^D {x_i^2 } }}-{{{\rm{e}}}}^{-\frac{1}{D}\sum\limits_{i = 1}^D {\cos (2 \pi x_i)} }$ | $[-100, 100]^D$ | 0 |
Rastrigrin | $f_3 (x) = { }\sum\limits_{i = 1}^D {[x_i^2-10\cos (2 \pi x_i)+10]} $ | $[-100, 100]^D$ | 0 |
Schewefel | ${ } f_4 (x) = 418.982\; 9\ast D+\sum\limits_{i = 1}^D {(-x_i \sin(\sqrt {x_i }))} $ | $[-500, 500]^D$ | 0 |
Rosenbrock | $f_5 (x) = { }\sum\limits_{i = 1}^{D-1} {[100(x_{i+1}-x_i^2)^2+(x_i-1)^2]} $ | $[-10, 10]^D$ | 0 |
Sum squares | $f_6 (x) = { }\sum\limits_{i = 1}^D {ix_i^2 } $ & $[-10, 10]^D$ | $[-10, 10]^D$ | 0 |
Dixon-price | $f_7 (x) = (x_1 -1)^2+{ }\sum\limits_{i = 2}^D {i(2x_i^2-x_{i-1})^2} $ | $[-10, 10]^D$ | 0 |
Table 3
Performance comparisons of IQBFO, QBFO, QGA and CPSO algorithms"
Function | IQBFO | QBFO | QGA | CPSO | |||||||
Iter | Average value | Iter | Average value | Iter | Average value | Iter | Average value | ||||
Griewank | 308 | 1.025 2E?01 | 372 | 1.126 9E+00 | 338 | 4.7286E+00 | 166 | 1.557 2E+00 | |||
Ackley | 315 | 1.585 7E?01 | 389 | 1.107 8E+01 | 328 | 5.458 2E+01 | 181 | 2.597 8E+01 | |||
Rastrigrin | 290 | 2.096 1E+01 | 387 | 1.022 9E+02 | 369 | 3.839 4E+02 | 147 | 3.201 5E+03 | |||
Schewefel | 156 | 1.735 5E+03 | 116 | 1.331 3E+04 | 153 | 1.314 8E+04 | 96 | 1.842 4E+04 | |||
Rosenbrock | 249 | 2.608 6E+01 | 265 | 1.209 8E+02 | 255 | 1.146 1E+02 | 107 | 1.810 5E+02 | |||
Sum squares | 271 | 2.149 3E?01 | 402 | 6.425 5E+00 | 368 | 8.617E+00 | 168 | 1.030 6E+01 | |||
Dixon-price | 237 | 2.016 2E+02 | 249 | 5.439 2E+03 | 239 | 4.750 8E+03 | 153 | 8.374 8E+03 |
Table 4
Parameters setting of servo system"
$K_{p2} $ | $K_{i2} $ | $K_{d2} $ | $K$ | $\alpha $ | $T_{on} $ | $K_{AP}$ | $T_Y $ | $K_g $ | $\theta '$ | $G_{com} $ |
0.8 | 10 | 0 | 480 | 19.1 | 0.08 | 23/440 | 0.08 | 1 | sin(0.1t) | $ {\left({1/25} \right)^2}{s^2} + 2 \times \left({1/25} \right) \times {\rm{ }}0.06s + 1 $ |
$ {\left({1/40} \right)^2}{s^2} + 2 \times {\rm{ }}\left({1/40} \right) \times {\rm{ }}0.09s + 1 $ |
Table 5
Results of parameter tuning"
Parameter | Algorithm | |||
IQBFO | QBFO | QGA | CPSO | |
$K_p $ | 0.253 6 | 0.181 2 | 0.140 5 | 0.235 5 |
$K_i $ | 0.001 3 | 0.001 3 | 0.001 5 | 0.001 6 |
$K_d $ | 0.102 2 | 0.073 4 | 0.051 5 | 0.070 2 |
$K_{fe} $ | 19.010 4 | 18.988 2 | 19.104 7 | 19.021 4 |
$\lambda $ | 0.000 3 | 0.000 1 | 0.000 4 | 0.000 3 |
$\mu $ | 0.827 | 0.778 9 | 0.681 | 0.701 1 |
1 | HUANG G, WU D, YANG W, et al. Self-tuning of PID parameters based on the modified particle swarm optimization. Proc. of the 8th IEEE World Congress on Intelligent Control and Automation, 2010: 5311-5314. |
2 | KANG J, MENG W, ABRAHAM A, et al. An adaptive PID neural network for complex nonlinear system control. Neurocomputing, 2014, 135 (8): 79- 85. |
3 |
ATTARAN S M, YUSOF R, SELAMAT H. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system. Applied Thermal Engineering, 2016, 99, 613- 624.
doi: 10.1016/j.applthermaleng.2016.01.025 |
4 | LIU X. Optimization design on fractional order PID controller based on adaptive particle swarm optimization algorithm. Nonlinear Dynamics, 2015, 84 (1): 379- 386. |
5 | NEATH M J, SWAIN A K, MADAWALA U K, et al. An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm. IEEE Trans. on Power Electronics, 2014, 29 (3): 1523- 1531. |
6 |
PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems, 2002, 22 (3): 52- 67.
doi: 10.1109/MCS.2002.1004010 |
7 | MAJHI R, PANDA G, MAJHI B, et al. Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques. Expert Systems with Applications, 2009, 36 (6): 1- 8. |
8 |
DASGUPTA S, DAS S, ABRAHAM A, et al. Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans. on Evolutionary Computation, 2009, 13 (4): 919- 941.
doi: 10.1109/TEVC.2009.2021982 |
9 |
DEVI S, GEETHANJALI M. Application of modified bacterial foraging optimization algorithm for optimal placement and sizing of distributed generation. Expert Systems with Applications, 2014, 41 (6): 2772- 2781.
doi: 10.1016/j.eswa.2013.10.010 |
10 | HUANG S, ZHAO G L. A comparison between quantum inspired bacterial foraging algorithm and GA-like algorithm for global optimization. International Journal of Computational Intelligence & Applications, 2012, 11 (3): 1969- 2013. |
11 | LI F, ZHANG Y T, WU J L, et al. Quantum bacterial foraging optimization algorithm. Proc. of the IEEE Congress on Evolutionary Computation, 2014: 1265-1272. |
12 | CAO J L, GAO H Y. A quantum-inspired bacterial swarming optimization algorithm for discrete optimization problems. Proc. of International Conference on Advances in Swarm Intelligence, 2012: 29-36. |
13 | DIAMANTOPOULOS A, LEREUN C, RASUL F, et al. A quantum bacterial foraging optimization algorithm and its application in spectrum sensing. International Journal of Modelling Identification & Control, 2013, 18 (3): 234- 242. |
14 | GAO H Y, LI C W. Quantum-inspired bacterial foraging algorithm for parameter adjustment in green cognitive radio. Journal of Systems Engineering & Electronics, 2015, 26 (5): 897- 907. |
15 |
HAN K H, KIM J H. Quantum-inspired evolutionary algorithms with a new termination criterion, Hε gate, and twophase scheme. IEEE Trans. on Evolutionary Computation, 2004, 8 (2): 156- 169.
doi: 10.1109/TEVC.2004.823467 |
16 | FANG Z B, LIAO B Q. Random process. Hefei: University of Science & Technology China Press, 1994. |
17 | RUDOLPH G. Convergence analysis of canonical genetic algorithms. IEEE Trans. on Neural Networks, 1994, 5 (1): 96- 101. |
18 | KENNEDY J, EBERHART R. Particle swarm optimization. Proc. of the IEEE International Conference on Neural Networks, 1995: 1942-1948. |
19 |
PODLUBNY I. Fractional-order systems and PIλDμ controllers. IEEE Trans. on Automatic Control, 1999, 44 (1): 208- 214.
doi: 10.1109/9.739144 |
20 |
ABD-ELAZIM S M, ALI E S. A hybrid particle swarm optimization and bacterial foraging for power system stability enhancement. Complexity, 2015, 21 (2): 245- 255.
doi: 10.1002/cplx.21601 |
[1] |
Bingqiang LI, Tianyi LAN, Yiyun ZHAO, Shuaishuai LYU.
Open-loop and closed-loop |
[2] | Kejun ZHANG, Guohua PENG. Robustness of iterative learning control for a class of fractional-order linear continuous-time switched systems in the sense of Lp norm [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 783-791. |
[3] | Hongyuan Gao and Chenwan Li. Quantum-inspired bacterial foraging algorithm for parameter adjustment in green cognitive radio [J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 897-907. |
[4] | Weiping Ding, Jiandong Wang, Zhijin Guan, and Quan Shi. Enhanced minimum attribute reduction based on quantum-inspired shuffled frog leaping algorithm [J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 426-. |
[5] | Zhe Gao and Xiaozhong Liao. Improved Oustaloup approximation of fractional-order operators using adaptive chaotic particle swarm optimization [J]. Journal of Systems Engineering and Electronics, 2012, 23(1): 145-153. |
[6] | Liu Jinkun & He Yuzhu. QFT control based on zero phase error compensation for flight simulator [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 125-131. |
[7] |
Liu Jinkun , He Peng & Er Lianjie.
Zero phase error control based on neural compensation for flight simulator servo system
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||