Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (1): 86-97.doi: 10.21629/JSEE.2018.01.09
• Systems Engineering • Previous Articles Next Articles
Changqiang HUANG(), Kangsheng DONG(), Hanqiao HUANG*(), Shangqin TANG(), Zhuoran ZHANG()
Received:
2017-01-18
Online:
2018-02-26
Published:
2018-02-23
Contact:
Hanqiao HUANG
E-mail:hcqxian@163.com;kgddks@163.com;cnxahhq@126.com;carnationtang2@163.com;zhuoran1009@163.com
About author:
HUANG Changqiang was born in 1961. He received his Ph.D. degree in navigation, guidance and control from Northwestern Polytechnical University in 2006. He is a professor and doctoral tutor of Air Force Engineering University. He has worked in aerial weapon system and application engineering for more than 30 years. His current research is the autonomous air combat for unmanned combat aerial vehicle, artificial intelligence including knowledge extraction, big data application and air combat simulation system. E-mail: Supported by:
Changqiang HUANG, Kangsheng DONG, Hanqiao HUANG, Shangqin TANG, Zhuoran ZHANG. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 86-97.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Conditional likelihood functions of situation assessment states"
Situation for UCAV | ${\it\Gamma} ^r$ | Likelihood function | Range |
Advantage | 1 | $p^{\vartheta ^r}(\vartheta _{k+1}^r |{\it\Gamma} _{k+1}^r = j) = (90^{\circ}-\vartheta _{k+1}^r)/90^{\circ}$ | $0^{\circ}{\leqslant} \vartheta ^r < 90^{\circ}$ |
$p^{\vartheta ^r}(\vartheta _{k+1}^r |{\it\Gamma} _{k+1}^r = j) = 0$ | $90^{\circ}{\leqslant} \vartheta ^r{\leqslant} 180^{\circ}$ | ||
$p^{\vartheta ^b}(\vartheta _{k+1}^b |{\it\Gamma} _{k+1}^r = j) = -(\vartheta _{k+1}^b -90^{\circ})/90^{\circ}$ | 0$^{\circ}{\leqslant} \vartheta ^b < 90^{\circ}$ | ||
$p^{\vartheta ^b}(\vartheta _{k+1}^b |{\it\Gamma} _{k+1}^r = j) = 0$ | $90^{\circ}{\leqslant} \vartheta ^b{\leqslant} 180^{\circ}$ | ||
$p^d(d_{k+1} |{\it\Gamma} _{k+1}^r = j) = 1-d_{k+1} /D_{\rm adv} $ | $[0, D_{\rm adv}]$ | ||
$p^d(d_{k+1} |{\it\Gamma} _{k+1}^r = j) = 0$ | $[D_{\rm adv}, \propto]$ | ||
Disadvantage | 2 | $p^{\vartheta ^r}(\vartheta _{k+1}^r |{\it\Gamma} _{k+1}^r = j) = 0$ | $0^{\circ}{\leqslant} \vartheta ^r < 90^{\circ}$ |
$p^{\vartheta ^r}(\vartheta _{k+1}^r |{\it\Gamma} _{k+1}^r = j) = -(90^{\circ}-\vartheta _{k+1}^r)/90^{\circ}$ | $^{\circ}{\leqslant} \vartheta ^r{\leqslant} 180^{\circ}$ | ||
$p^{\vartheta ^b}(\vartheta _{k+1}^b |{\it\Gamma} _{k+1}^r = j) = (90^{\circ}-\vartheta _{k+1}^b)/90^{\circ}$ | $^{\circ}{\leqslant} \vartheta ^b < 90^{\circ}$ | ||
$p^{\vartheta ^b}(\vartheta _{k+1}^b |{\it\Gamma} _{k+1}^r = j) = 0$ | $90^{\circ}{\leqslant} \vartheta ^b{\leqslant} 180^{\circ}$ | ||
$p^d(d_{k+1} |{\it\Gamma} _{k+1}^r = j) = 1-d_{k+1}/D_{\rm adv} $ | $[0, D_{\rm adv}]$ | ||
$p^d(d_{k+1} |{\it\Gamma} _{k+1}^r = j) = 0$ | $[D_{\rm adv}, \propto]$ | ||
Mutual safe | 3 | $p^{\vartheta ^r}(\vartheta _{k+1}^r |{\it\Gamma} _{k+1}^r = j) = -(\vartheta _{k+1}^r-90^{\circ})/90^{\circ}$ | $0^{\circ}{\leqslant} \vartheta ^r < 90^{\circ}$ |
$p^{\vartheta ^r}(\vartheta _{k+1}^r |{\it\Gamma} _{k+1}^r = j) = 0$ | $90^{\circ}{\leqslant} \vartheta ^r{\leqslant} 180^{\circ}$ | ||
$p^{\vartheta ^b}(\vartheta _{k+1}^b |{\it\Gamma} _{k+1}^r = j) = 0$ | $0^{\circ}{\leqslant} \vartheta ^b < 90^{\circ}$ | ||
$p^{\vartheta ^b}(\vartheta _{k+1}^b |{\it\Gamma} _{k+1}^r = j) = (\vartheta _{k+1}^b -90^{\circ})/90^{\circ}$ | $90^{\circ}{\leqslant} \vartheta ^b{\leqslant} 180^{\circ}$ | ||
$p^d(d_{k+1} |{\it\Gamma} _{k+1}^r = j) = d_{k+1}/D_{\rm adv} $ | $[0, D_{\rm adv}]$ | ||
$p^d(d_{k+1} |{\it\Gamma} _{k+1}^r = j) = 1$ | $[D_{\rm adv}, \propto]$ | ||
Mutual disadvantage | 4 | $p^{\vartheta ^r}(\vartheta _{k+1}^r |{\it\Gamma} _{k+1}^r = j) = (90^{\circ}-\vartheta _{k+1}^r)/90^{\circ}$ | $0^{\circ}{\leqslant} \vartheta ^r < 90^{\circ}$ |
$p^{\vartheta ^r}(\vartheta _{k+1}^r |{\it\Gamma} _{k+1}^r = j) = 0$ | $90^{\circ}{\leqslant} \vartheta ^r{\leqslant} 180^{\circ}$ | ||
$p^{\vartheta ^b}(\vartheta _{k+1}^b |{\it\Gamma} _{k+1}^r = j) = 90-\vartheta _{k+1}^b /90$ | $0^{\circ}{\leqslant} \vartheta ^b < 90^{\circ}$ | ||
$p^{\vartheta ^b}(\vartheta _{k+1}^b |{\it\Gamma} _{k+1}^r = j) = (\vartheta _{k+1}^b -90)/90$ | $90^{\circ}{\leqslant} \vartheta ^b{\leqslant} 180^{\circ}$ | ||
$p^d(d_{k+1}|{\it\Gamma} _{k+1}^r = j) = d_{k+1}/D_{\rm adv} $ | $[0, D_{\rm adv}]$ | ||
$p^d(d_{k+1}|{\it\Gamma} _{k+1}^r = j) = 0$ | $[D_{\rm adv}, \propto]$ |
1 | ERNEST N, CARROLL D, SCHUMACHER C, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions. Journal of Defense Management, 2016, 6 (1): 144. |
2 |
KARIMI J, POURTAKDOUST S H. Optimal maneuver-based motion planning over terrain and threats using a dynamic hybrid PSO algorithm. Aerospace Science and Technology, 2013, 26 (1): 60- 71.
doi: 10.1016/j.ast.2012.02.014 |
3 |
FRAZZOLI E, DAHLEH M A, FERON E. Real-time motion planning for agile autonomous vehicles. Journal of Guidance, Control and Dynamics, 2002, 25 (1): 116- 129.
doi: 10.2514/2.4856 |
4 | HUANG C Q, DING D L, Huang H Q, et al. Autonomous attack technology for UCAV. Beijing: National Defense Industry Press, 2014. |
5 | D oD. Unmanned systems integrated roadmap: FY2013-2038. Washington DC: Office of the Under Secretary of Defense (Acquisition Technology and Logistics), 2013. |
6 |
AUSTIN F, CARBONE G, HINZ H, et al. Game theory for automated maneuvering during air-to-air combat. Journal of Guidance, Control, and Dynamics, 1990, 13 (6): 1143- 1149.
doi: 10.2514/3.20590 |
7 |
PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix. International Journal of Aeronautical and Space Sciences, 2016, 17 (2): 204- 213.
doi: 10.5139/IJASS.2016.17.2.204 |
8 | CHE J, QIAN W Q, HE Z C. Attack-defense confrontation simulation of air combat based on game-matrix approach. Flight Dynamics, 2015, 33 (2): 173- 177. |
9 |
POROPUDAS J, VIRTANEN K. Game-theoretic validation and analysis of air combat simulation models. IEEE Trans. on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 40 (5): 1057- 1070.
doi: 10.1109/TSMCA.2010.2044997 |
10 | SUN T Y, TSAI S, LEE Y, et al. The study on intelligent advanced fighter air combat decision support system. Proc. of the IEEE International Conference on Information Reuse & Integration, 2006: 39-44. |
11 |
VIRTANEN K, RAIVIO T, RAIMO P H. Decision theoretical approach to pilot simulation. Journal of Aircraft, 1999, 36 (4): 632- 641.
doi: 10.2514/2.2505 |
12 |
ZHONG L, TONG M A, ZHONG W, et al. Sequential maneuvering decisions based on multi-stage influence diagram in air combat. Journal of Systems Engineering and Electronics, 2007, 18 (3): 551- 555.
doi: 10.1016/S1004-4132(07)60128-5 |
13 |
VIRTANEN K, RAIVIO T, HÄMÄLÄINEN R P. Modeling pilot's sequential maneuvering decisions by a multistage influence diagram. Journal of Guidance, Control, and Dynamics, 2004, 27 (4): 665- 677.
doi: 10.2514/1.11167 |
14 | MCGREW J S, HOW J P, WILLIAMS B, et al. Air combat strategy using approximate dynamic programming. Journal of Guidance Control & Dynamics, 2010, 33 (5): 1641- 1654. |
15 | MCGREW J S. Real-time maneuvering decisions for autonomous air combat. Massachusetts, U.S.: Massachusetts Institute of Technology, 2008. |
16 | MA Y, MA X, SONG X. A case study on air combat decision using approximated dynamic programming. Mathematical Problems in Engineering, 2014, 18340. |
17 |
MUKAI H, TANIKAWA A, TUNAY I, et al. Sequential linearquadratic method for differential games with air combat applications. Computational Optimization and Applications, 2003, 25 (1/3): 193- 222.
doi: 10.1023/A:1022957123924 |
18 |
MAURO P, BRUCE A C. Numerical solution of the threedimensional orbital pursuit-evasion games. Journal of Guidance, Control, and Dynamics, 2009, 32 (2): 474- 487.
doi: 10.2514/1.37962 |
19 |
HORIE K, CONWAY B A. Optimal fighter pursuit-evasion maneuvers found via two-sided optimization. Journal of Guidance, Control, and Dynamics, 2006, 29 (1): 105- 112.
doi: 10.2514/1.3960 |
20 |
IMADO F, KURODA T. Family of local solutions in a missileaircraft differential game. Journal of Guidance, Control, and Dynamics, 2011, 34 (2): 583- 591.
doi: 10.2514/1.48345 |
21 | FU L, XIE F, WANG D, et al. The overview for UAV aircombat decision method. Proc. of the 26th Chinese Control and Decision Conference, 2014: 3380-3384. |
22 |
ENDSLEY M R. A survey of situation awareness requirements in air-to-air combat fighters. International Journal of Aviation Psychology, 1993, 3 (2): 157- 168.
doi: 10.1207/s15327108ijap0302_5 |
23 | RAO N P, KASHYAP S K, GIRIJA G. Situation assessment in air-combat: a fuzzy-Bayesian hybrid approach. Proc. of the International Conference on Aerospace Science and Technology, 2008: 063. |
24 | GALLAGHER M, MACKENZIE C, BLUM D, et al. Improving risk assessment communication. Military Operations Research, 2016, 21 (1): 5- 20. |
25 | NGUYEN D, FISHER D C, RYAN L. Agraph-based approach to situation assessment. Proc. of the AIAA Infotech Aerospace, 2010: 1-6. |
26 | PREVOST C G, THÉRIAULT O, DESBIENS A, et al. Receding horizon model-based predictive control for dynamic target tracking: a comparative study. Proc. of the AIAA Guidance, Navigation, and Control Conference, 2009: 1-9. |
27 |
KARELAHTI J, VIRTANEN K, RAIVIO T. Near-optimal missile avoidance trajectories via receding horizon control. Journal of Guidance, Control, and Dynamics, 2007, 30 (5): 1287- 1298.
doi: 10.2514/1.26024 |
28 |
ZHANG Y, CHEN J, SHEN L. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control. Chinese Journal of Aeronautics, 2013, 26 (4): 1038- 1056.
doi: 10.1016/j.cja.2013.04.040 |
29 |
VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game. Journal of Guidance, Control, and Dynamics, 2006, 29 (5): 1080- 1091.
doi: 10.2514/1.17168 |
30 |
KOUBA G, BOTEZ R M, BOELY N. Fuzzy logic method use in F/A-18 aircraft model identification. Journal of Aircraft, 2010, 47 (1): 10- 17.
doi: 10.2514/1.40714 |
31 |
ERNEST N, COHEN K, KIVELEVITCH E, et al. Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles. Unmanned Systems, 2015, 3 (3): 185- 204.
doi: 10.1142/S2301385015500120 |
32 | AKABARI S, MENHAJ M B, NIKRAVESH S K. Fuzzy modeling of offensive maneuvers in an air-to-air combat. Proc. of the Computational Intelligence, Theory and Applications, 2005: 171-184. |
33 | PASHAYEV A, ASKEROV D, SADIQOV R, et al. Fuzzyneural approach for aircraft gas turbine engines diagnosing. Proc. of AIAA Intelligent Systems Technical Conference, 2006: 484-486. |
34 | HÜLNHAGEN T, DENGLER I, TAMKE A, et al. Maneuver recognition using probabilistic finite-state machines and fuzzy logic. Proc. of the IEEE Intelligent Vehicles Symposium, 2010: 65-70. |
35 |
WANG Y J, DONG J, LIU X, et al. Identification and standardization of maneuvers based upon operational flight data. Chinese Journal of Aeronautics, 2015, 28 (1): 133- 140.
doi: 10.1016/j.cja.2014.12.026 |
36 |
DONG Y, AI J. Trial input method and own-aircraft state prediction in autonomous air combat. Journal of Aircraft, 2012, 49 (3): 947- 954.
doi: 10.2514/1.C031671 |
37 |
HERBST W B. Dynamics of air combat. Journal of Aircraft, 1983, 20 (7): 594- 598.
doi: 10.2514/3.44916 |
38 |
HUI Y L, NAN Y, CHEN S D, et al. Dynamic attack zone of air-to-air mission after being launched in random wind field. Chinese Journal of Aeronautics, 2015, 28 (5): 1519- 1528.
doi: 10.1016/j.cja.2015.08.013 |
39 | MCDAID A F, MURPHY T B, FRIEL N, et al. Improved Bayesian inference for the stochastic block model with application to large networks. Computational Statistics & Data Analysis, 2012, 60 (4): 12- 31. |
40 | VIERTL R, SUNANTA O. Fuzzy Bayesian inference. Metron, 2013, 71 (3): 207- 216. |
41 | SYNNAEVE G, BESSIERE P. Special tactics: a bayesian approach to tactical decision-making. Proc. of IEEE Conference on Computational Intelligence and Games, 2012: 409-416. |
[1] | Junming HU, Hongzhong HUANG, Yanfeng LI. Bayesian estimation of a power law process with incomplete data [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 243-251. |
[2] | Rudong ZHAO, Xianming SHI, Qian WANG, Xiaobo SU, Xing SONG. Bayesian inference for ammunition demand based on Gompertz distribution [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 567-577. |
[3] | Zhuoming LI, Xing CHEN, Yu ZHANG, Peng WANG, Wei QIANG, Ningqing LIU. Fuzzy mathematics and game theory based D2D multicast network construction [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 13-21. |
[4] | Liang WANG, Huanyu LI, Jin'ge MA. Inference for dependence competing risks from bivariate exponential model under generalized progressive hybrid censoring with partially observed failure causes [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 201-208. |
[5] | Qinghua HAN, Minghai PAN, Wucai ZHANG, Zhiheng LIANG. Time resource management of OAR based on fuzzy logic priority for multiple target tracking [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 742-755. |
[6] | Ximeng XU, Rennong YANG, Ying FU. Situation assessment for air combat based on novel semi-supervised naive Bayes [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 768-779. |
[7] | Qingchun Li, Wensheng Zhang, Gang Han, and Yuan Xie. Fuzzy sliding mode control guidance law with terminal impact angle and acceleration constraints [J]. Systems Engineering and Electronics, 2016, 27(3): 664-679. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||