Systems Engineering and Electronics

• ELECTRONICS TECHNOLOGY • Previous Articles     Next Articles

Blind recognition of k/n rate convolutional encoders from noisy observation

Li Huang1,2, Wengu Chen3, Enhong Chen2, and Hong Chen3,*   

  1. 1. Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China;
    2. Graduate School, China Academy of Engineering Physics, Beijing 100088, China;
    3. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • Online:2017-04-25 Published:2010-01-03

Abstract:

Blind recognition of convolutional codes is not only essential for cognitive radio, but also for non-cooperative context. This paper is dedicated to the blind identification of rate k/n convolutional encoders in a noisy context based on Walsh-Hadamard transformation and block matrix (WHT-BM). The proposed algorithm constructs a system of noisy linear equations and utilizes all its coefficients to recover parity check matrix. It is able to make use of fault-tolerant feature of WHT, thus providing more accurate results and achieving better error performance in high raw bit error rate (BER) regions. Moreover, it is more computationally efficient with the use of the block matrix (BM) method.