Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (5): 1287-1294.doi: 10.23919/JSEE.2024.000104
• CONTROL THEORY AND APPLICATION • Previous Articles Next Articles
Tianxuan FENG1(), Hanyi ZHANG1(), Rong FAN1(), Honghao MA2(), Mengcheng DONG3(), Lijing LI1,*()
Received:
2023-11-01
Accepted:
2023-11-20
Online:
2024-10-18
Published:
2024-11-06
Contact:
Lijing LI
E-mail:371901301@qq.com;164401013@qq.com;fanrong_buaa@outlook.com;mahonghao@buaa.edu.cn;dongmengcheng_1120@163.com;lilijing@buaa.edu.cn
About author:
Tianxuan FENG, Hanyi ZHANG, Rong FAN, Honghao MA, Mengcheng DONG, Lijing LI. Low-power system model for quantum entangled photon-pair source[J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1287-1294.
1 |
EINSTEIN A, PODOLSKY B, ROSEN N Can quantum-mechanical description of physical reality be considered complete. Physical Review, 1935, 47 (10): 777- 780.
doi: 10.1103/PhysRev.47.777 |
2 |
BELL J S On the einstein podolsky rosen paradox. Physics Physique Fizika, 1964, 1 (3): 195- 200.
doi: 10.1103/PhysicsPhysiqueFizika.1.195 |
3 |
ASPECT A, GRANGIER P, ROGER G Experimental tests of realistic local theories via Bell’s theorem. Physical Review Letters, 1981, 47 (7): 460- 463.
doi: 10.1103/PhysRevLett.47.460 |
4 |
REN J G, XU P, YONG H L, et al Ground-to-satellite quantum teleportation. Nature, 2017, 549 (7670): 70- 73.
doi: 10.1038/nature23675 |
5 |
FAN R H, MA Q Q, LI L Q, et al Liquid level and refractive index double-parameter sensor based on tapered photonic crystal fiber. Journal of Lightwave Technology, 2020, 38 (14): 3717- 3722.
doi: 10.1109/JLT.2020.2975814 |
6 |
WANG S, YIN Z Q, HE D Y, et al Twin-field quantum key distribution over 830 km fibre. Nature Photonics, 2022, 16 (2): 154- 161.
doi: 10.1038/s41566-021-00928-2 |
7 |
DEGEN C L, REINHARD F, CAPPELLARO P Quantum sensing. Reviews of Modern Physics, 2017, 89 (3): 035002.
doi: 10.1103/RevModPhys.89.035002 |
8 |
PIRANDOLA S, BARDHAN B R, GEHRING T, et al Advances in photonic quantum sensing. Nature Photonics, 2018, 12 (12): 724- 733.
doi: 10.1038/s41566-018-0301-6 |
9 |
WANG S Y, LI L J, CHEN W, et al Improving seeking precision by utilizing ghost imaging in a semi-active quadrant detection seeker. Chinese Journal of Aeronautics, 2021, 34 (12): 171- 176.
doi: 10.1016/j.cja.2020.11.020 |
10 |
CAO Y, XU W Y, LIN B, et al Long short-term memory network of machine learning for compensating temperature error of a fiber optic gyroscope independent of the temperature sensor. Applied Optics, 2022, 61 (28): 8212- 8222.
doi: 10.1364/AO.471762 |
11 |
BORNMAN N, PRABHAKAR S, VALLES A, et al Ghost imaging with engineered quantum states by Hong-Ou-Mandel interference. New Journal of Physics, 2019, 21 (7): 073044.
doi: 10.1088/1367-2630/ab2f4d |
12 |
WANG S Y, LI L J, YU Z J, et al Image-free target classification with semiactive laser detection system. IEEE Sensors Journal, 2022, 22 (23): 23088- 23094.
doi: 10.1109/JSEN.2022.3217281 |
13 |
WANG C H, LIU H L, CUI H D, et al Two-photon endomicroscopy with microsphere-spliced double-cladding antiresonant fiber for resolution enhancement. Optics Express, 2022, 30 (15): 26090- 26101.
doi: 10.1364/OE.461325 |
14 |
CHENG Y, ZHAO X Y, LI L J, et al First-photon imaging with independent depth reconstruction. Applied Physics Letters Photonics, 2022, 7 (3): 036103.
doi: 10.1063/5.0086159 |
15 |
ALBASH T, LIDAR D A Adiabatic quantum computation. Reviews of Modern Physics, 2018, 90 (1): 015002.
doi: 10.1103/RevModPhys.90.015002 |
16 |
FINK M, STEINLECHNER F, HANDSTEINER J, et al Entanglement-enhanced optical gyroscope. New Journal of Physics, 2019, 21 (5): 053010.
doi: 10.1088/1367-2630/ab1bb2 |
17 |
COLOMBO S, PEDROZO P E, ADIYATULLIN A F, et al Time-reversal-based quantum metrology with many-body entangled states. Nature Physics, 2022, 18 (8): 925- 930.
doi: 10.1038/s41567-022-01653-5 |
18 |
FAN R, LIU Z H, JIN D, et al High temporal waveform fidelity stimulated Brillouin scattering phase conjugate mirror using Novec-7500. Optics Express, 2023, 31 (2): 1878- 1887.
doi: 10.1364/OE.470032 |
19 |
SHUMAKOVA V, MALEVICH P, ALISAUSKAS S, et al Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nature Communications, 2016, 7 (1): 12877.
doi: 10.1038/ncomms12877 |
20 |
GAO J, QIAO L F, LIN X F, et al Non-classical photon correlation in a two-dimensional photonic lattice. Optics Express, 2016, 24 (12): 12607- 12616.
doi: 10.1364/OE.24.012607 |
21 |
FU Y, MIDORIKAWA K, TAKAHASHI E J Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification. Scientific Reports, 2018, 8 (1): 7692.
doi: 10.1038/s41598-018-25783-0 |
22 |
TONINELLI E, MOREAU P A, GREGORY T, et al Resolution-enhanced quantum imaging by centroid estimation of biphotons. Optica, 2019, 6 (3): 347- 353.
doi: 10.1364/OPTICA.6.000347 |
23 |
ZHANG H, JIN X M, YANG J, et al Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nature Photonics, 2011, 5 (10): 628- 632.
doi: 10.1038/nphoton.2011.213 |
24 |
WANG X L, CHEN L K, LI W, et al Experimental ten-photon entanglement. Physical Review Letters, 2016, 117 (21): 210502.
doi: 10.1103/PhysRevLett.117.210502 |
25 | XU L, NISHIMURA K, SUDA A, et al. Optimization of a multi-TW few-cycle 1.7-µm source based on Type-I BBO dual-chirped optical parametric amplification. Optics Express, 2020, 28(10): 15138−15147. |
26 |
KWIAT P G, MATTLE K, WEINFURTER H, et al New high-intensity source of polarization-entangled photon pairs. Physical Review Letters, 1995, 75 (24): 4337.
doi: 10.1103/PhysRevLett.75.4337 |
27 |
KWIAT P G, WAKS E, WHITE A G, et al Ultrabright source of polarization-entangled photons. Physical Review A, 1999, 60 (2): R773.
doi: 10.1103/PhysRevA.60.R773 |
28 |
KUKLEWICZ C E, FIORENTINO M, MESSIN G, et al High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter. Physical Review A, 2004, 69 (1): 013807.
doi: 10.1103/PhysRevA.69.013807 |
29 |
FENG T X, ZHANG S Y, WU T, et al Entangled photon-pair source using a wedge-shaped nonlinear crystal. Optical Materials, 2023, 145, 114441.
doi: 10.1016/j.optmat.2023.114441 |
30 |
SERI A, LENHARD A, RIELANDER D, et al Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory. Physical Review X, 2017, 7 (2): 021028.
doi: 10.1103/PhysRevX.7.021028 |
31 |
MARING N, LAGO RIVERA D, LENHARD A, et al Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom C-band. Optica, 2018, 5 (5): 507- 513.
doi: 10.1364/OPTICA.5.000507 |
32 |
PRAKASH V, BIANCHET L C, CUAIRAN M T, et al Narrowband photon pairs with independent frequency tuning for quantum light-matter interactions. Optics Express, 2019, 27 (26): 38463- 38478.
doi: 10.1364/OE.382474 |
33 |
SENKO C, RICHERME P, SMITH J, et al Realization of a quantum integer-spin chain with controllable interactions. Physical Review X, 2015, 5 (2): 021026.
doi: 10.1103/PhysRevX.5.021026 |
34 |
DAI H N, YANG B, REINGRUBER A, et al Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code Hamiltonian. Nature Physics, 2017, 13 (12): 1195- 1200.
doi: 10.1038/nphys4243 |
35 |
SOMPET P, HIRTHE S, BOURGUND D, et al Realizing the symmetry-protected Haldane phase in Fermi-Hubbard ladders. Nature, 2022, 606 (7914): 484- 488.
doi: 10.1038/s41586-022-04688-z |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||