Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (5): 1231-1244.doi: 10.23919/JSEE.2024.000095
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Xuan LI1(), Jiang JIANG1(), Jianbin SUN1(), Haiyue YU1(), Leilei CHANG1,2,*()
Received:
2022-12-26
Online:
2024-10-18
Published:
2024-11-06
Contact:
Leilei CHANG
E-mail:xlhunan@126.com;jiangjiangnudt@163.com;sunjianbin@nudt.edu.cn;haiyue_nudt@163.com;leileichang@hotmail.com
About author:
Supported by:
Xuan LI, Jiang JIANG, Jianbin SUN, Haiyue YU, Leilei CHANG. Accountable capability improvement based on interpretable capability evaluation using belief rule base[J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1231-1244.
Table 1
Sub-capabilities in radar capability evaluation"
Number | Sub-capability | Representative index | Type | Range |
1 | Surveillance (S) | Maximum surveillance distance/km | Benefit | [0, |
2 | Positioning (P) | Position precision coefficient/km | Cost | [0.1 4] |
3 | Identification (I) | Target identification belief level | Benefit | [0, 1] |
4 | Tracking (T) | Target track filtering precision | Cost | [0, 2.5] |
5 | Anti-jamming (AJ) | Disturbance suppression ration | Benefit | [0, 1] |
Table 2
Initial BRB for overall capability evaluation"
Number | θ | IF (sub-capabilities) | THEN (overall capability)/% | Comment | |||||||
S | P | I | T | AJ | High | Medium | Low | ||||
1 | 1 | 0 | 4 | 0 | 2.5 | 0 | 0 | 0 | 100 | Least optimal condition | |
2 | 1 | 0.1 | 1 | 0 | 1 | 100 | 0 | 0 | Optimal condition | ||
3 | 1 | 1.5 | 0.6 | 1.2 | 0.8 | 70 | 30 | 0 | Under influence | ||
4 | 1 | 3 | 0.3 | 2 | 0.4 | 40 | 40 | 20 | Under influence | ||
5 | 1 | 2000 | 2.5 | 0.4 | 1.8 | 0.5 | 50 | 30 | 20 | Under influence | |
6 | 1 | 2 | 0.5 | 1.6 | 0.6 | 50 | 40 | 10 | Under influence |
Table 3
Matching degree and weight calculation"
Rules | Matching degree calculation | Weight calculation | ||||||
Matching degree of a single sub-capability | Integrated matching degree | Initial weight | Weight | |||||
S | P | I | T | AJ | ||||
Rule 1 | 0.6 | 0 | 0 | 0 | 0 | 0.12 | 1 | 0.12 |
Rule 2 | 0 | 0 | 0 | 0.2 | 0 | 0.04 | 1 | 0.04 |
Rule 3 | 0.4 | 0 | 0 | 0 | 0.5 | 0.18 | 1 | 0.18 |
Rule 4 | 0 | 0 | 0.2 | 0.8 | 0 | 0.20 | 1 | 0.20 |
Rule 5 | 0 | 0.4 | 0.8 | 0 | 0 | 0.24 | 1 | 0.24 |
Rule 6 | 0 | 0.6 | 0 | 0 | 0.5 | 0.22 | 1 | 0.22 |
Table 7
Different portfolios of key sub-capabilities, the overall capability, and the cost"
Scheme number | Key sub-capability | Overall capability/% | Cost | |||||
Surveillance | Positioning | Identification | High | Medium | Low | |||
1 | 1.80 | 0.50 | 61.05 | 25.44 | 13.51 | 52 | ||
2 | 1.80 | 0.60 | 67.17 | 24.99 | 7.84 | 112 | ||
3 | 1.50 | 0.60 | 69.70 | 25.46 | 4.84 | 142 | ||
4 | 1.50 | 0.70 | 71.61 | 23.09 | 5.30 | 202 | ||
5 | 0.80 | 0.70 | 75.83 | 18.38 | 5.79 | 322 | ||
6 | 0.80 | 0.80 | 78.42 | 15.74 | 5.84 | 382 | ||
7 | 0.80 | 0.90 | 80.67 | 13.57 | 5.76 | 392 | ||
8 | 0.80 | 0.95 | 81.84 | 12.52 | 5.64 | 397 |
Table 8
Optimized BRB (oBRB) for overall capability evaluation"
Number | θ | IF (sub-capabilities) | THEN (overall capability)/% | |||||||
S | P | I | T | AJ | High | Medium | Low | |||
1 | 0 | 4 | 0 | 2.5 | 0 | 0 | 0 | 100 | ||
2 | 3.47 | 0.42 | 2.34 | 0.38 | 29.87 | 33.67 | 36.46 | |||
3 | 2.89 | 0.59 | 2.03 | 0.49 | 48.52 | 27.19 | 24.29 | |||
4 | 2.33 | 0.71 | 1.77 | 0.63 | 62.58 | 26.67 | 10.75 | |||
5 | 1.78 | 0.85 | 1.16 | 0.78 | 81.13 | 14.73 | 4.14 | |||
6 | 0.1 | 1 | 0 | 1 | 100 | 0 | 0 |
Table 10
Comparison of overall capability improvement using the initial and optimized BRBs"
Capability | Status of sub-capabilities | Overall capability (“high”)/% | Cost |
Present capability (before capability improvement) | S=3 600 km; P=2.20 km; I=0.38; T=2.10; AJ=0.70 | 59.20 | NA |
Overall capability improved by initial BRB | S=3 600 km; P=2.20 km; I=0.38; T=2.10; AJ=0.70 | 81.84 | 397 |
Overall capability improved by optimized BRB | S=3 600 km; P=2.20 km; I=0.38; T=2.10 AJ=0.70 | 80.82 | 295 |
S=3 600 km; P=2.20 km; I=0.38; T=2.10 AJ=0.70 | 81.34 | 370 |
Table 11
Different portfolios of key sub-capabilities, the overall capability, and the cost"
Approach | Parameter setting | MAE | Analytical step | Adoptable |
Initial BRB | Six rules, three scales in the capability evaluation results. | 3.44e-03 | Yes | Yes |
Optimized BRB | 6.25e-03 | |||
BPNN | The number of layers is 2, the number of neurons is 10, the epoch is | 3.23e-03 | No | No |
SVM | Kernal function is RBF, C=0.2 | 1.41e-02 | No | No |
1 | CORREIA J Military capabilities and the strategic planning conundrum. Security & Defence Quarterly, 2019, 24 (2): 21- 50. |
2 | SMEETS M The strategic promise of offensive cyber operations. Strategic Studies Quarterly, 2018, 12 (3): 90- 113. |
3 |
PIOTROWSKY L, JAESCHKE T, KUEPPERS S, et al Enabling high accuracy distance measurements with FMCW radar sensors. IEEE Trans. on Microwave Theory and Techniques, 2019, 67 (12): 5360- 5371.
doi: 10.1109/TMTT.2019.2930504 |
4 | U. S. Department of Defense. FY 2022 Defense Budget. https://www.defense.gov/Spotlights/FY2022-Defense-Budget/. |
5 | LIU R X, WU L, XIE Z G, et al Auxiliary situation analysis for air defense system based on generative adversarial network. Systems Engineering and Electronics, 2022, 44 (8): 2522- 2529. |
6 | QIAN L W, XU X Q, DOU Y J, et al System capability requirements recommendation method based on RIMER method. Systems Engineering and Electronics, 2022, 44 (12): 3719- 3727. |
7 |
ZHAO L D, WANG B, HE J, et al SE-DEA-SVM evaluation method of ECM operational disposition scheme. Journal of Systems Engineering and Electronics, 2022, 33 (3): 600- 611.
doi: 10.23919/JSEE.2022.000058 |
8 |
BLANKENSHIP B, LIN-GREENBERG E Trivial tripwires?: military capabilities and alliance reassurance. Security Studies, 2022, 31 (1): 92- 117.
doi: 10.1080/09636412.2022.2038662 |
9 |
WALLIS J, POWLES A Burden-sharing: the US, Australia and New Zealand alliances in the Pacific islands. International Affairs, 2021, 97 (4): 1045- 1065.
doi: 10.1093/ia/iiab081 |
10 |
JIANG J, CHANG L L, ZHANG L M, et al Retraceable and online multi-objective active optimal control using belief rule base. Knowledge-Based Systems, 2021, 233, 107553.
doi: 10.1016/j.knosys.2021.107553 |
11 |
CHANG L L, JIANG J, SUN J B, et al Disjunctive belief rule base spreading for threat level assessment with heterogeneous, insufficient, and missing information. Information Sciences, 2019, 476, 106- 131.
doi: 10.1016/j.ins.2018.10.004 |
12 |
CHANG L L, FU C, WU Z J, et al A data-driven method using BRB with data reliability and expert knowledge for complex systems modeling. IEEE Trans. on Systems, Man, Cybernetics: Systems, 2022, 52 (11): 6729- 6743.
doi: 10.1109/TSMC.2021.3095524 |
13 |
CHANG L L, ZHANG L M, FU C, et al Transparent digital twin for output control using the belief rule base. IEEE Trans. on Cybernetics, 2022, 52 (10): 10364- 10378.
doi: 10.1109/TCYB.2021.3063285 |
14 |
KAUSHAL M, KHEHRA B S, SHARMA A Soft computing based object detection and tracking approaches: state-of-the-art survey. Applied Soft Computing, 2018, 70, 423- 464.
doi: 10.1016/j.asoc.2018.05.023 |
15 | WHITLEY D, RANA S, DZUBERA J, et al Evaluating evolutionary algorithms. Artificial Intelligence, 1996, 85 (1/2): 245- 276. |
16 | KRAMER O, KRAMER O. Genetic algorithms. Cham: Springer International Publishing, 2017. |
17 |
TANG M N, CHEN S J, ZHENG X H, et al Sensors deployment optimization in multi-dimensional space based on improved particle swarm optimization algorithm. Systems Engineering and Electronics, 2018, 29 (5): 969- 982.
doi: 10.21629/JSEE.2018.05.09 |
18 |
WANG L S B, WANG X S, XU Z H Principle and approach to polarization modulation for radar super-resolution. Scientia Sinica Informationis, 2023, 53, 993- 1007.
doi: 10.1360/SSI-2022-0141 |
19 |
AUBRY A, MAIO A D, ROSAMILIA M Reconfigurable intelligent surfaces for N-LOS radar surveillance. IEEE Trans. on Vehicular Technology, 2021, 70 (10): 10735- 10749.
doi: 10.1109/TVT.2021.3102315 |
20 | U. S. Department of Defense. The DoDAF architecture framework version 2.02. https://dodcio.defense.gov/Library/DoD-Architecture-Framework/. |
21 |
ZENG L H, YAO F Q, ZHANG J Z, et al Dynamic spectrum access based on prior knowledge enabled reinforcement learning with double actions in complex electromagnetic environment. China Communications, 2022, 19 (7): 13- 24.
doi: 10.23919/JCC.2022.07.002 |
22 |
GUO S, AKHTAR S, MELLA A A method for radar model identification using time-domain transient signals. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (5): 3132- 3149.
doi: 10.1109/TAES.2021.3074129 |
23 |
YAN J K, JIAO H, PU W Q, et al Radar sensor network resource allocation for fused target tracking: a brief review. Information Fusion, 2022, 86/87, 104- 115.
doi: 10.1016/j.inffus.2022.06.009 |
24 |
LI K, JIU B, PU W Q, et al Neural fictitious self-play for radar anti-jamming dynamic game with imperfect information. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (6): 5533- 5547.
doi: 10.1109/TAES.2022.3175186 |
25 |
DENG W, ZHANG X X, ZHOU Y Q, et al An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences, 2022, 585, 441- 453.
doi: 10.1016/j.ins.2021.11.052 |
26 | DING D R, WANG Z D, HAN Q L, et al Neural-network-based output-feedback control under round-robin scheduling protocols. IEEE Trans. on Cybernetics, 2018, 49 (6): 2372- 2384. |
27 | OUCHEN S, STEINHART H, BENBOUZID M, et al Robust DPC-SVM control strategy for shunt active power filter based on H∞ regulators. International Journal of Electrical Power & Energy Systems, 2020, 117, 105699. |
[1] | Ziwei ZHANG, Qisheng GUO, Zhiming DONG, Hongxiang LIU, Ang GAO, Pengcheng QI. Operational effectiveness evaluation based on the reduced conjunctive belief rule base [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1161-1172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||