With the advantage of exceptional long-range traffic perception capabilities and data fusion computational prowess, the cloud control system (CCS) has exhibited formidable potential in the realm of connected assisted driving, such as the adaptive cruise control (ACC). Based on the CCS architecture, this paper proposes a cloud-based predictive ACC (PACC) strategy, which fully considers the road slope information and the preceding vehicle status. In the cloud, based on the dynamic programming (DP), the long-term economic speed planning is carried out by using the slope information. At the vehicle side, the real-time fusion planning of the economic speed and the preceding vehicle state is realized based on the model predictive control (MPC), taking into account the safety and economy of driving. In order to ensure the safety and stability of the vehicle-cloud cooperative control system, an event-triggered cruise mode switching method is proposed based on the state of each subsystem of the vehicle-cloud-network-map. Simulation results indicate that the PACC system can still ensure stable cruising under delays and some complex conditions. Moreover, under normal conditions, compared to the ACC system, the PACC system can further improve economy while ensuring safety and improve the overall energy efficiency of the vehicle, thus achieving fuel savings of 3% to 8%.