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Abstract: Rotating machinery is widely used in the industry. They
are vulnerable to many kinds of damages especially for those
working under tough and time-varying operation conditions. Early
detection of these damages is important, otherwise, they may lead
to large economic loss even a catastrophe. Many signal processing
methods have been developed for fault diagnosis of the rotating
machinery. Local mean decomposition (LMD) is an adaptive mode
decomposition method that can decompose a complicated sig-
nal into a series of mono-components, namely product functions
(PFs). In recent years, many researchers have adopted LMD in
fault detection and diagnosis of rotating machines. We give a
comprehensive review of LMD in fault detection and diagnosis of
rotating machines. First, the LMD is described. The advantages,
disadvantages and some improved LMD methods are presented.
Then, a comprehensive review on applications of LMD in fault di-
agnosis of the rotating machinery is given. The review is divided
into four parts: fault diagnosis of gears, fault diagnosis of rotors,
fault diagnosis of bearings, and other LMD applications. In each
of these four parts, a review is given to applications applying the
LMD, improved LMD, and LMD-based combination methods, re-
spectively. We give a summary of this review and some future
potential topics at the end.
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1. Introduction

Rotating machines are widely utilized in civilian, indus-
trial and military applications. They are vulnerable to many
kinds of damages especially for those working under tough
and time-varying operation conditions. Early detection of
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these damages is important, otherwise, they may lead to
large economic loss even a catastrophe [1 – 9]. Therefore,
the development of effective fault diagnosis techniques is
essential for safety and better maintenance decision mak-
ing in applications using rotating machinery [10 – 12].

The signals collected from rotating machines are very
complicated. They contain not only the frequency com-
ponents from the interested rotating machine component
but also interference frequencies from other neighbouring
components, and environment noises. It is also common to
have the phenomenon of amplitude modulation, frequency
modulation and phase modulation in these signals. In ad-
dition, rotating machines often work under time-varying
speed and load conditions, which causes the signals col-
lected from them non-stationary [13 – 16]. If a fault occurs
in a rotating machine, the fault signature is hard to be iden-
tified due to the above-mentioned interferences.

Many signal processing methods have been developed
for the rotating machinery based on the theory of ba-
sis function expansion, such as fast Fourier transform,
short-time Fourier transform, and wavelet transform (WT)
[17 – 22]. Fourier series expansion lays a foundation for
fast Fourier transform and short-time Fourier transform.
Wavelet basis expansion is the core of the wavelet trans-
form. These basis function expansion based methods have
many merits, such as simplicity, uniqueness and symme-
try, but they also suffer from inflexibility and lack degree
of freedom [23]. Prior knowledge or analysis on signals is
required to identify a proper basis function and the expan-
sion coefficients. These types of methods do not work very
well for non-stationary complicated signals collected from
the rotating machinery.

Adaptive mode decomposition methods are effective in
dealing with non-stationary signals. It does not require
much prior knowledge about the signals to use these meth-
ods. They can capture the local properties of a signal such
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as fault symptoms very effectively. Lei et al. [24] gave
a very detailed review on empirical mode decomposition
(EMD) and its applications in fault diagnosis of rotating
machinery. Feng et al. [25] reviewed almost all the adaptive
mode decomposition methods, such as EMD, local mean
decomposition (LMD), intrinsic time-scale decomposition,
local characteristic scale decomposition, Hilbert vibration
decomposition, empirical wavelet transform, variational
mode decomposition, nonlinear mode decomposition, and
adaptive local iterative filtering. LMD was briefly reviewed
in [25,26], but it is not thorough especially in the area of
fault diagnosis of rotating machines. Only about 10 papers
related to LMD were covered in [25] and four papers re-
lated to LMD were covered in [26]. Here, we will give a
comprehensive review on the LMD and its applications of
LMD in fault detection and diagnosis of rotating machin-
ery machines and their components. Some examples are
illustrated for better understanding.

With LMD, a complicated signal can be decomposed
into many mono-components, namely product functions
(PFs). The PF is a product of a frequency modulated sig-
nal and an envelope signal. The main idea of LMD is to
progressively smooth a signal by using moving averages.
Through LMD, the instantaneous frequency (IF) of each
PF can be obtained. It does not need the Hilbert transform
(HT) as EMD does. The IF is a key parameter to describe
the physical nature of each mono-component (i.e., PF).

The application of LMD has been quite wide, e.g., in bi-
ology [27], medicine treatments [28] and engineering [29].
We will give a comprehensive review of the LMD-based
methods focusing on its applications in gears, rotors, bear-
ings and others. For each category, a review will be given
on the applications by using LMD, improved LMD meth-
ods, and LMD-based combination methods, respectively.

There are three reasons for such a review. First, LMD is
a powerful adaptive mode decomposition method, which
has been widely used in the fault diagnosis of the rotat-
ing machinery. In addition, many improvements have been
made on the LMD method for better decomposition perfor-
mance. However, a comprehensive review of LMD does
not exist. Therefore, it is necessary to give a comprehen-
sive review of LMD and its applications in fault diagnosis
of rotating machinery in this paper. The literature review
will facilitate other researchers especially new researchers
to properly use or further improve the LMD based fault
diagnosis methods. Second, a thorough literature review
is conducted for gears, bearings, rotors and other rotat-
ing machinery, respectively. For each of them, the refer-
ences are divided into three categories to facilitate the rea-
ders: applications using LMD, applications using im-
proved LMD methods, and applications using LMD-based
combination methods. For the researchers who work on

the condition monitoring of the rotating machinery, they
can easily find the research state-of-art in using the LMD
and its variants. Our work will help them and save their
time to find proper methods for their specific applications.
Third, although many improvements have been made on
LMD, there are still some issues which should be studied
in-depth. The authors have been improving the LMD for
many years. The insights and experiences shared in this
paper will benefit other researchers to further improve the
LMD method.

2. LMD

2.1 Description of LMD

The LMD is proposed to estimate the IF and instantaneous
amplitude (IA) of a signal [4]. LMD can decompose a
multi-component signal into a series of PFs and a residue.
Each PF is a mono-component which is, in essence, the
product of an envelope signal and a frequency modulated
signal. Based on the definition of the PF, a two-lever cir-
culation algorithm is used to complete the decomposition.
First, a rigorous calculation of the PF is completed through
the inner cycle. Second, the decomposition of the signal
based on the iterations is performed in the outer cycle.
Given any signal x(t), eight steps are required to imple-
ment the LMD method.

Step 1 Find out all local extrema ni of the original sig-
nal x(t). Calculate the local mean value mi and local en-
velope estimate ai of two successive extrema ni and ni+1

by using (1) and (2), respectively.

mi =
ni+1 + ni

2
(1)

ai =
|ni+1 − ni|

2
(2)

Step 2 Connect all the local mean values mi and local
envelope estimate ai by using straight lines.

Step 3 Construct the local mean function m11(t) and
the amplitude function a11(t) by smoothing the local mean
and envelope estimate via the moving averaging method.

Step 4 Subtract the local mean function m11(t) from
the original signal x(t) to obtain a residue signal h11(t).

h11(t) = x(t) − m11(t) (3)

Then, a frequency modulated signal s11(t) can be ob-
tained as

s11(t) =
h11(t)
a11(t)

. (4)

Step 5 Repeat Steps 1 – 3 to get the envelope estimate
a12(t) of s11(t). If the envelope function a12(t) = 1, stop
the procedure and take s12(t) as the first purely frequency
modulated (FM) signal. Otherwise, let s11(t) be the origi-
nal signal and repeat Steps 1 – 4 n times until the envelope
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function a1(n+1)(t) of s1n(t) satisfies a1(n+1)(t) = 1. The
first iterative process can be expressed as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h11(t) = x(t) − m11(t)
h12(t) = s11(t) − m12(t)

...
h1n(t) = s1(n−1)(t) − m1n(t)

(5)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s11(t) =
h11(t)
a11(t)

s12(t) =
h12(t)
a12(t)

...

s1n(t) =
h1n(t)
a1n(t)

. (6)

Step 6 Calculate the corresponding instantaneous am-
plitude of the product function as

a1(t) = a11(t)a12(t) . . . a1n(t) =
n∏

q=1

a1q(t). (7)

Step 7 Construct the first product function PF1(t) us-
ing

PF1(t) = a1(t)s1n(t). (8)

In theory, PF1(t) contains the most oscillation informa-
tion of the signal x(t). The IA of PF1(t) is a1(t) and the
IF can be calculated as follows:

f1(t) =
1
2π

d[arccos(s1n(t))]
dt

. (9)

Step 8 Compute the residue signal u1(t). Regard u1(t)
as a new signal and repeat the above procedure k times un-
til uk(t) does not contain oscillation. The second iterative
process can be expressed as follows:

⎧⎪⎨
⎪⎩

u1(t) = x(t) − PF1(t)
...

uk(t) = uk−1(t) − PFk(t)

. (10)

Correspondingly, the original signal can also be recon-
structed using

x(t) =
k∑

p=1

PFk(t) + uk(t) (11)

where uk(t) is the residue signal and k is the number of
PFs.

A flowchart of the LMD method is presented in Fig. 1
for better understanding.

Fig. 1 Flowchart of LMD

Next, we use a synthetic signal x(t) as expressed in (12)
to illustrate the performance of the LMD method. The
time duration of the signal is 1 s with sampling frequency
1 000 Hz.

⎧⎪⎪⎨
⎪⎪⎩

x = x1(t) + x2(t)
x1(t) = (1 + 0.5 cos(2πfAM1t))·

cos(2πfPM1t)) + 1.5 cos(20πt)
x2(t) = (1.5 + 0.5 cos(2πfAM2t)) cos(60πt)

(12)
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The simulation signal consists of two mono-component
signals x1(t) and x2(t).

x1(t) is an amplitude modulated (AM)-FM signal with
modulation frequencies fAM1 = 7 Hz and fFM1 =
100 Hz. x2(t) is an AM signal with a modulation fre-
quency fAM2 = 0.5 Hz. Fig. 2 shows the time domain
waveforms of x(t), x1(t) and x2(t), respectively.

Fig. 2 Time domain waveforms of x(t), x1(t) and x2(t)

We then apply the LMD to decompose the simulation
signal x(t). The decomposition results are presented in
Fig. 3. Two PFs and a residue signal ur(t) are generated.
PF1(t) is an AM-FM component corresponding to x1(t)
and PF2 is an AM component corresponding to x2(t).
PF1(t) and PF2(t) match well with x1(t) and x2(t), re-
spectively. The residue signal ur(t) contains two unex-
pected peaks, which demonstrates that the demodulation is
not perfect. We will give more explanation about the short-
comings of LMD in Section 2.2.

Fig. 3 Demodulation of x1(t) using LMD

2.2 Drawbacks of LMD

LMD shows good ability in demodulating amplitude and
frequency modulated signals. However, it is not perfect.
It has shortcomings, e.g., end effects and mode mixing.
For better understanding, the decomposition results in Fig.
3 are utilized to illustrate the end effect and mode mix-
ing problems. Fig. 4 shows PF1(t) and its corresponding
real AM-FM signal x1(t). We can observe distortions in
the two ends of PF1(t). This phenomenon is called the
end effect of LMD. In addition, we can see another distor-
tion at around 0.2 s. This is called mode mixing of LMD.
These phenomena are also common in EMD [24]. Fig. 5(a)
gives the time-frequency distribution (TFD) of PF1(t) and
PF2(t) generated by LMD and Fig. 5(b) presents the TFD
of the real signal x(t). The time-frequency of PF2(t) has
a fine time-frequency resolution and its instantaneous fre-
quency is almost a constant at 30 Hz. However, the time-
frequency of PF1(t) occurs severe frequency distortion es-
pecially at around 0.2 s due to the mode mixing between
PF1(t) and PF2(t).

Fig. 4 Illustration of mode mixing and end effects

To quantitatively measure the decomposition perfor-
mance of LMD, root means square error (RMSE), orthogo-
nal index (OI) [30,31] and energy loss are taken as measure
indicators. The definition of RMSE and OI are expressed
in (13) and (14), respectively.

RMSE =
√

E(s(t) − c(t))2 (13)

where s(t) and c(t) stand for the original signal component
and the decomposed signal corresponding to s(t), respec-
tively.

OI =

NPF∑
i=1

j<i∑
j=1

∣∣∣∣∣
N∑

k=1

PFik × PFjk

∣∣∣∣∣
N∑

k=1

(xk − uk)2
(14)
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where NPF is the number of PFs, N denotes the length
of a PF, xk represents the original signal, uk stands for
the residue after the LMD decomposition, PFik(t) and
PFjk(t) are the ith and jth PF at sifting step k, respec-
tively.

Fig. 5 Time-frequency spectrum

Table 1 gives the test results by using the above-
mentioned measure indicators. Note that the values of the
three parameters should be the smaller the better (they
should be zero if the decomposition is perfect). From
Table 1, we observe that the RMSE values of PF1(t) and
PF2(t) are 0.172 7 and 0.140 5, respectively. It indicates
that there is some degree of distortion occurring in PF1(t)
and PF2(t). The OI values of PF1(t) and PF2(t) are not
zero, which means that the two PFs are not orthogonalwith
each other. The total energy loss is 191.8 (the energy of the
original signal is 1 747.7 and the energy of the decomposed
signals is 1 555.9), which implies that the energy will de-
crease after the LMD decomposition.

Table 1 Performance evaluation of LMD method by using three in-
dicators

RMSE
PF1 PF2

OI Energy loss

0.172 7 0.140 5 0.064 3 LMD method

It should be noted that the sifting stopping criterion of
LMD in Step 5 is hard to be determined in practice. There-
fore, a variation δ is usually given in advance such as
1 − δ � a1(n+1)(t) � 1 + δ and −1 � s1n(t) � 1. In
the example illustrations of this paper, we set the variation
δ = 10−5.

2.3 Improved LMD methods

Since LMD has the drawbacks as mentioned above, many
studies have been done to improve the performance of
LMD.

Liu et al. [32,33] developed a soft sifting stopping cri-
terion that enables LMD to achieve a self-adaptive stop
for each sifting process. The proposed soft sifting stopping
criterion is effective for improving the decomposition ac-
curacy of LMD. Guo et al. [34] developed a novel signal
waveform extension method to eliminate the end effects
of LMD. Liu et al. [35] proposed the integral extension
LMD (IELMD) to suppress the end effects of LMD. Zhao
et al. [36] combined support vector regression (SVR) with
LMD to achieve endpoint continuation of the decomposed
signals, which reduces the end effects of LMD.

Li et al. [37] developed an improved LMD method
called differential rational spline-based LMD to alleviate
the mode mixing of LMD. Yang et al. [38] presented the
ensemble LMD (ELMD) to reduce the mode mixing of
LMD. Deng [39] used cubic spline interpolation in LMD
to obtain the local mean function and envelope estima-
tion function for better extremum interpolation. Wang et
al. [40] adopted the cubic B-spline interpolation to genera-
te the envelope estimation function and demonstrated its
effectiveness by using experimental signals. Zhang and Liu
[41] applied the Hermite interpolation to replace the mov-
ing average process in LMD and validated its advantage in
bearing fault diagnosis.

We can see many methods have been developed to im-
prove the performance of LMD. We will not be able to
give details on all the methods. We select two prospective
methods, namely ELMD method and spline-based LMD
to illustrate their advantages compared with the original
LMD.

2.3.1 ELMD

As we know, LMD can decompose a signal into many PFs.
The IFs of each PF are significant in fault diagnosis of
rotating machines. Unfortunately, the mode mixing leads
to the IFs loss of physical meaning, which causes the bad
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performance of LMD in real applications. Targeting at ad-
dressing this shortcoming, Yang et al. [38] obtained the
filter bank structure of the white noise by numerical ex-
periments and then developed the ELMD. ELMD has been
widely used in many applications [38,42– 44]. ELMD can
reduce the mode mixing to be some extent and enhance the
decomposition accuracy of the LMD method.

The filter bank structure of the white noise is repre-
sented by a high-pass filter and a series of band-pass fil-
ters in the frequency domain. When a signal is added by
the white noise and then decomposed by LMD, all scales
of the signal would be automatically decomposed into the
corresponding frequency bands of the filter bank deter-
mined by the white noise. Consequently, the phenomenon
of mode-mixing can be avoided to some extent [11]. De-
tailed steps of implementing the ELMD are summarized
and a flowchart of ELMD is given in Fig. 6 for better un-
derstanding.

Fig. 6 Flowchart of the ELMD method

Step 1 Determine the power of the added noises and
the number of ensembles M .

Step 2 Add the mth trial of the white noise nm(t) to the
original signal to generate the mth new noise-added signal
xm(t), xm(t) = x(t) + nm(t).

Step 3 Decompose the noise-added signal xm(t) by
using LMD to obtain IPFs where I is the number of PFs.

Step 4 Repeat the above Step 2 and Step 3 M times to
generate M sets of PFs.

Step 5 Compute the ensemble mean of the M trails for

each PF as PFi(t) =
1
M

M∑
m=1

pfi,m(t), where PFi,m(t)

represents the ith (i = 1, 2, 3, . . . , I) PF of the mth (m =
1, 2, 3, . . . , M) trial.

Step 6 Take the obtained mean of IPFi(t) (i =
1, 2, 3, . . . , I) as the final decomposition results.

To illustrate the advantages of ELMD, a synthetic signal
x(t) is used to compare the performance between LMD
and ELMD. The synthetic signal x(t) consists of three
signals x1(t), x2(t) and x3(t). x1(t) represents a high-
frequency cosine signal with discontinuity.x2(t), x3(t) de-
note two cosine signals with different frequencies.

⎧⎪⎪⎨
⎪⎪⎩

x(t) = x1(t) + x2(t) + x3(t)
x1(t) = 0.1 × cos(2π× 0.16t)× u(t − 300)
x2(t) = 0.2 × cos(2π× 0.05t)
x3(t) = cos(2π× 0.005t)

(15)

where u(t) is a step signal.
Fig. 7 gives the time domain signals of x(t), x1(t), x2(t)

and x3(t), respectively. LMD and ELMD are utilized to de-
compose x(t), respectively. The decomposition results are
illustrated in Fig. 8 and Fig. 9, respectively. In the plots,
the PF1(t), PF2(t) and PF3(t) correspond to x1(t), x2(t)
and x3(t), respectively.

It can be seen from Fig. 8 that the PFs generated by the
LMD are anamorphic with severe mode mixing. By con-
trast, the PFs generated by the ELMD match well with the
original signals with slight scale-mixing as shown in Fig.
9. The comparison illustrates that ELMD can alleviate the
mode mixing and obtain more accurate decomposition re-
sults. This is because the added noises help LMD improve
its filtering property [44].

Fig. 7 Time domain of waveforms of x(t), x1(t), x2(t) and x3(t)
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Fig. 8 Decomposition of x(t) using LMD

Fig. 9 Decomposition of x(t) using ELMD

2.3.2 Spline-based local mean decomposition

LMD uses extrema to generate the local mean and enve-
lope, then applies the moving average to smooth the lo-
cal mean function and envelope estimation function. To
decrease errors induced in the smoothing process, spline-
based LMD is developed to generate the local mean func-
tion and envelope estimation function [39]. The upper en-
velope and the lower envelope are obtained by connect-
ing the local maxima and local minima using cubic spline
curves, respectively. The local mean is defined as the mean
of the upper envelope and the lower envelope.

In the spline-based LMD, the upper and lower envelope
functions at the ith section of the arbitrary adjacent ex-
treme points are represented by envmax

i (t) and envmin
i (t),

respectively. The spline-based LMD obtains the local mean
function and the local envelope function using (16) and
(17), respectively.

mi(t) =
envmax

i (t) + envmin
i (t)

2
(16)

ai(t) =
envmax

i (t) − envmin
i (t)

2
(17)

where mi(t) and ai(t) are the local mean function and lo-
cal envelope function for the ith section of the arbitrary
adjacent extreme points, respectively.

Compared with LMD, spline-based LMD can genera-
te more accurate decomposition results with less computa-
tional time [39]. Inspired by the spline-based LMD, other
interpolation methods such as B-spline [40], rational spline
interpolation [45], cubic Hermite interpolation [46], ratio-
nal Hermite interpolation [47], cubic trigonometric Her-
mite interpolation [48] and monotonic piecewise cubic
Hermite interpolation [49], are also used in LMD for better
decomposition performance.

3. Applications of LMD in fault diagnosis of
rotating machinery

The applications of LMD in fault diagnosis of rotating ma-
chines and components such as gears, rotors, and bearings
are mainly reviewed. Some common applications in other
fields are also reviewed.

3.1 Fault diagnosis of gears

The section is divided into three categories as follows: ap-
plications using LMD, applications using improved LMD
methods, and applications using LMD-based combination
methods.

3.1.1 Applications using LMD

Chen et al. [50] utilized LMD to analyze vibration sig-
nals of gearboxes and successfully identified their fault
frequencies. Chen et al. [51] adopted LMD to generate
the time-frequency representation (TFR) of gearbox vibra-
tion signals for fault diagnosis. Wang et al. [52] applied
the instantaneous time-frequency spectrum (ITFS) based
LMD to detect the damages on a low-speed helical gear-
box. Cheng et al. [53] compared LMD with EMD and
demonstrated that LMD had better feature extraction abi-
lity for amplitude and frequencymodulated signals. Li [54]
conducted an envelope spectrum analysis of selected PFs
and experimentally demonstrated its effectiveness in fault
diagnosis of gear wear. Pan et al. [55] applied envelope
spectrum based LMD to identify localized gear damages.

3.1.2 Applications using improved LMD methods

Some improved LMD methods have been developed to ob-
tain more accurate decomposition results for gear fault di-
agnosis. Zhou et al. [56] applied the cubic interpolation
instead of moving average in LMD to improve the decom-
position efficiency, and a mean generating function model
was used to restrain the end effect. Their method was
demonstrated to be effective in gear localized fault detec-
tion. Li et al. [47] developed an optimized LMD (OLMD)
method based on a bandwidth selection criterion to se-
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lect the suitable PF in the sifting process. Experimental
results validated the effectiveness of OLMD in gear fault
diagnosis. Wei et al. [57] presented a Hermite-based LMD
method and proved its effectiveness in gear fault signature
extraction. To alleviate the end effects of LMD, Guo et
al. [34] introduced a waveform extension method to im-
prove the decomposition accuracy of LMD and demon-
strated effectiveness of their method in diagnosing gear
wear faults. Liu et al. [33] developed a self-adaptive stop-
ping criterion and demonstrated the effectiveness of their
proposed method in gear fault diagnosis. Li et al. [37]
proposed a differential rational spline-based LMD (DRS-
LMD) method to alleviate the mode mixing and generate
more accurate decomposition results. This method outper-
forms LMD in early fault detection of gears.

3.1.3 Applications using LMD-based combination
methods

The combination of LMD with other signal process-
ing methods or artificial intelligent techniques has been
adopted by many researchers in gear fault diagnosis.
Cheng et al. [58] combined order tracking with LMD to
identify gear fault frequencies in the run-up and run-down
operation conditions. Zheng et al. [59] combined LMD and
generalized morphological fractal dimensions (GMFDs) to
extract gear fault features and then applied kernel fuzzy c-
means (KFCM) to fulfill gear fault diagnosis. Liu et al. [60]
proposed a hybrid fault diagnosis method by using the se-
cond generation wavelet transform (SGWT) and LMD.
The SGWT was applied to remove background noises
and then LMD was employed to detect localized dam-
age on a gear. Han et al. [61] incorporated LMD with
sample entropy (SE) and time-frequency peak filtering
(TFPF) in gear fault diagnosis and demonstrated that their
method has better fault detection ability than the combi-
nation of wavelet and TFPF. Guo et al. [62] presented a
gear fault diagnosis method by the combination of syn-
chrosqueezing transform and LMD and demonstrated that
the proposed combination method could improve the time-
frequency representation of LMD. Wang et al. [63] ap-
plied LMD to obtain gear fault signatures after removing
the strong noises by using the minimum entropy decon-
volution (MED). Li et al. [64] applied LMD as a prepro-
cessor to extract fault signatures from gear vibration sig-
nals, then back propagation (BP) neural network was uti-
lized to identify different gear health conditions. Wan et
al. [65] presented a fault diagnosis framework based on
LMD and least squares support vector machine (LSSVM)
to classify different gear fault types. Chen et al. [66] in-
corporated fuzzy entropy into LMD to extract gear fault
features and then applied an adaptive neuro-fuzzy infer-
ence system (ANFIS) to identify gear fault types. Wei et al.

[67] conducted fault pattern identification of gears by com-
bining LMD, permutation entropy (PE) and extreme learn-
ing machine (ELM). Liu et al. [68] combined LMD and
multi-class reproducing wavelet support vector machines
(RWSVM) to classify health conditions of gears.

For convenience, a summary of the combination meth-
ods is given in Table 2 and Table 3. Table 2 summarizes the
signal processing methods that are combined with LMD
for gear fault diagnosis. Table 3 summarizes the classifiers
that are combined with LMD for fault classification.

Table 2 Signal processing methods combined with LMD for gear
fault diagnosis

Combination method Reference
LMD + Morlet wavelets [69]
Order tracking + LMD [58]

LMD + Chirp-Z transform (CZT) [70]
SGWD + LMD [60]

LMD + SE + TFPF [61]
LMD + Cyclostationary demodulation [71]

LMD + Synchrosqueezing transform + TFR [62]
MED+ LMD + Cyclic autocorrelation

function demodulation
[63]

LMD + Kurtosis [72]

Table 3 Classifiers combined with LMD for gear fault classification

Classifier Feature extraction method
BP LMD + Energy characteristic [64]

LSSVM LMD + Energy characteristic [65]

KFCM
LMD + GMFDs + Mutual information

entropy value [59]
ANFIS model LMD + Fuzzy entropy [66]

ELM LMD + PE [67]
RWSVM LMD + Statistic features [68]

3.2 Fault diagnosis of gears

This section describes the applications of LMD in rotor
fault diagnosis.

3.2.1 Applications using LMD

Wang et al. [73] applied LMD in fault diagnosis of a mill
rubbing rotor and demonstrated its effectiveness for early
fault detection. Ren et al. [74] utilized LMD to diagnose
a rotor crack fault and demonstrated that LMD had better
performance than EMD in terms of mitigating end effects.
Xiang et al. [75] demonstrated the effectiveness of LMD
in the diagnosis of turbine rotors with imbalance, oil whirl
and rubbing faults, respectively.

3.2.2 Applications using improved LMD methods

Yang et al. [38] achieved fault diagnosis of a rotor sys-
tem by using ELMD. A method of boundary process and a
strategy for determining the step size of the moving aver-
age were presented to improve the LMD in [76]. The im-
proved LMD method performed well in the detection of
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rub-impact faults of a rotor system and was demonstrated
to be more powerful than LMD. Hu et al. [77] demon-
strated that spline-based LMD outperformed LMD in fault
detection of a rotor system. Deng et al. [39] incorporated
the cubic B-spline interpolation into LMD to improve the
decomposition efficiency, which was effective in detecting
rotor misalignment faults.

3.2.3 Applications using LMD-based combination
methods

Zhang et al. [78] combined LMD and pattern spectrum
to extract the fault characteristics of a rotor system. Deng
et al. [79] calculated the Teager energy kurtosis (TEK) of
each PF derived from LMD and then utilized the obtained
features to diagnose a rotor-bearing rig with rub-impact ro-
tor faults. Xiang et al. [80] employed LMD and Wigner-
Ville distribution to obtain the time-frequency representa-
tion and verified the effectiveness of their method in de-
tecting rotor imbalance faults. Zhang et al. [81] combined
wavelet packet decomposition, LMD and self-adaptive
Wigner-Ville distribution to separate the aliasing modes
while maintaining the natures and features of the original
PF component, which was experimentally demonstrated to
be effective in fault diagnosis of rotor systems.

Table 4 summarizes the reported studies of LMD-based
combination methods for rotor fault diagnosis.

Table 4 LMD-based combination methods for rotor fault diagnosis

Combination method Reference
LMD + Pattern spectrum [78]

LMD + TEK [79]
LMD + Self-adaptive Wigner-Ville distribution [81]

LMD + Multi-Class RWSVM [68]
LMD + AR + Neural network [82]

3.3 Fault diagnosis of bearings

This section describes the applications of LMD in bearing
fault diagnosis.

3.3.1 Applications using LMD

Liu et al. [83] performed envelope analysis on selected PFs
obtained from LMD and demonstrated its effectiveness in
wind turbine bearing fault diagnosis. Li et al. [84] applied
LMD and envelope spectrum analysis on bearing vibration
signals for fault detection. Wang et al. [85] utilized LMD
to extract fault signatures of rolling bearings with outer
race faults and experimentally demonstrated its effective-
ness.

3.3.2 Applications using improved LMD methods

Wang et al. [86] developed the so-called complete ELMD
with adaptive noise (CELMDAN) to eliminate residual

noise and generate the same number of PFs at differ-
ent trials. Their diagnosis results indicated that CELM-
DAN could extract more fault characteristic information of
rolling bearings with less interference than ELMD. Deng
et al. [39] used cubic spline interpolation to obtain the
local mean function and envelope estimation function to
improve calculation efficiency of LMD, which was effec-
tive in diagnosing a rotor-bearing system with rub-impact
faults. Chen et al. [46] improved the calculation efficiency
of LMD using monotone piecewise cubic Hermite interpo-
lation (MPCHI) instead of cubic spline interpolation (CSI)
to construct the envelope estimation function. This method
is successful in fault diagnosis of reciprocating compressor
bearings. Liu et al. [87] proposed a method called integral
extension LMD (IELMD) to alleviate the end effects of
LMD and demonstrated its effectiveness in analyzing ball
bearing faults. Zhao et al. [88] put forward an improved
LMD algorithm based on extracting the extrema of enve-
lope curve to reduce the influence of high-frequency noise,
and experimental results showed that it was effective and
reliable in bearing fault diagnosis.

3.3.3 Applications using LMD-based combination
methods

Xie et al. [89] combined LMD and Wigner-Ville spectrum
entropy (WVSE) for rolling bearing fault diagnosis, and
demonstrated that their method had good performance in
fault pattern recognition. Yu et al. [90] incorporated mul-
tilayer hybrid denoising into LMD for signal denoising
and demonstrated its effectiveness in weak fault feature
extraction of rolling bearings. Yang et al. [91] proposed
a fault diagnosis method based on the variable predictive
model based class discriminate (VPMCD), order track-
ing and LMD, and then applied it in feature extraction
of rolling bearings. Deng et al. [92] combined LMD and
Fourier transform to obtain spectra features for bearing
fault diagnosis. Hunglinh et al. [93] calculated the char-
acteristic amplitude ratios of PFs as input indicators of
support vector machine (SVM) to classify fault patterns
of roller bearings. Liu et al. [94] introduced a feature ex-
traction method by integrating LMD and the multi-scale
entropy to discover effective features for fault diagnosis
of bearings. Han et al. [95] combined LMD, sample en-
tropy and energy ratio to extract features considered as in-
puts of the SVM for pattern identification. Tian et al. [96]
combined LMD and singular value decomposition (SVD)
to extract features from rolling bearing signals, and then
utilized ELM to diagnose bearing faults. Zhao et al. [97]
used Hermite LMD (HLMD) and multiscale fuzzy entropy
(MFE) to extract effective features for bearing fault diag-
nosis. Cai et al. [98] combined LMD and Wigner higher
moment spectrum (WHMS) to diagnose bearing faults and
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demonstrated that their method was more powerful than
the Wigner-Ville spectrum analysis. Shi et al. [99] pre-
sented a novel feature extraction method based on LMD
and PE. The features were used in the optimized K-means
clustering algorithm to classify bearing fault types. Xu et
al. [100] combined LMD and morphologicalfiltering to ex-
tract bearing fault features and then used LSSVM to clas-
sify various bearing fault types. Gao et al. [101] com-
bined LMD, multiscale permutation entropy (MPE) and
hidden Markov model (HMM) for bearing fault diagnosis.
In [39,102,103], LMD was employed to preprocess bear-
ing vibration signals and generated effective features that
were considered as inputs of SVM to classify bearing fault
types.

For readers’ convenience, Table 5 and Table 6 list the
signal processing methods and classifiers, respectively,
that are combined with LMD for bearing fault diagnosis.

Table 5 Signal processing methods combined with LMD for bearing
fault diagnosis

Combination method Reference
LMD + WVD + WVSE [89]

LMD + Fourier transform [92]
LMD + Correlation analysis + WHMS [98]

LMD + HT + Teager energy operator (TEO) +
Fourier transform

[104]

LMD + Ensemble empirical mode decomposition
(EEMD) + Time-frequency analysis

[105]

LMD + Wavelet threshold denoising
method + Kurtosis

[106]

LMD + SVD + Time frequency map +
marginal spectrum

[107]

Table 6 Classifiers combined with LMD for bearing fault diagnosis

Classifier Feature extraction method
VPMCD LMD + Computed order tracking (COT) [91]

SVM

LMD + Fault characteristic amplitude ratios [93,108],
LMD + Mutiscale sample entropy (MSE) [94],

LMD + SE + energy ratio [95],
HLMD + Adaptive mutiscale fuzzy entropy

(AMFE) [102], HLMD + MFE [97]; LMD+ MPE +
Laplacian score [103]; LMD + Morphological

filtering [100], LMD + Autoregressive
model [109], LMD + PCA [110], LMD + Energy

entropy [111], LMD + Kernel principal
component analysis [112]

ELM LMD + SVD [96]
K-means
clustering

LMD + PE [99]

HMM LMD + Multiscale permutation entropy (MPE) [101]
MDTW LMD + PE [113]

BP
LMD + Energy characteristics [114],

LMD + Power spectrum [115]
FCM ELMD + SVD [116]

Mahalanobis
distance

LMD + Kullback-leibler divergence [117]

Neural
network

ELMD + Energy characteristic [118]

3.4 Other LMD applications

Besides the applications of LMD in fault diagnosis of
gears, rotors and bearings, there are many applications of
LMD in other fields which will be reviewed in this section.

3.4.1 Applications using LMD

Smith [27] invented LMD and applied it to analyze a set of
scalp electroencephalogram visual perception data. Lin et
al. [119] employed LMD to examine the signals captured
from an offshore platform for fault diagnosis.

3.4.2 Applications using improved LMD methods

Si et al. [48] proposed an improved LMD method based
on the cubic trigonometric Hermite interpolation (CTHI)
with shape parameters, and experiments demonstrate its
effectiveness in identifying different cutting categories of
a shearer. Zhao et al. [36] developed an improved LMD
method to restrain the end effects of LMD and applied it to
classify faults of a hoister. Zhao et al. [120] employed ra-
tional Hermite interpolation to generate the envelope-line
and demonstrated the advantages of the improved LMD
in fault diagnosis of reciprocating compressors. Zhao et al.
[49] proposed a compound interpolation envelope LMD by
using a novel envelope construction method called mono-
tonic piecewise cubic Hermite interpolation. The effective-
ness of their method is validated in the diagnosis of recip-
rocating compressor oversized bearing clearance fault.

3.4.3 Applications using LMD-based combination
methods

Tang et al. [121] combined LMD and Lempel-Ziv com-
plexity (LZC) to extract fault features of reciprocating
compressor gas valves and verified the effectiveness of
their method. Sun et al. [122] used the LMD and enve-
lope spectrum entropy to extract fault features of a pipeline
system and then classified various health conditions using
SVM. Li et al. [123] combined cascaded bistable stochas-
tic resonance (CBSR) with LMD to diagnose the recip-
rocating compressors. Jiang et al. [124] combined LMD
with the improved adaptive multi-scale morphology anal-
ysis (IAMMA) to detect the damages on hydraulic pumps.
Tian et al. [125] applied SVD to extract features from PFs,
then used these features as inputs of SVM for fault identifi-
cation of hydraulic pumps. Sun et al. [42] proposed a time-
delay estimation algorithm based on ELMD and high-order
ambiguity function (HAF) to locate natural gas pipeline
leaks. Zhao et al. [97] combined LMD and MFE to ex-
tract fault features of reciprocating compressors and then
achieved fault pattern identification. Wang et al. [126] in-
troduced a novel intelligent method by combining LMD,
PCA and SVM to detect leakage in natural gas pipelines.
Huang et al. [127] calculated the time segmentation en-
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ergy entropy (TSEE) of PFs and used them as inputs of the
support vector data description (SVDD) to classify various
fault types of high voltage circuit breakers. Sun et al. [128]
adopted ELMD and sparse representation for fault classifi-
cation of natural gas pipelines. Si et al. [129] proposed an
intelligent method based on LMD, Laplacian score (LS)

and fuzzy C-means (FCM) to recognize different cutting
categories and working conditions of a shearer.

For convenience, Table 7 summarizes the signal pro-
cessing methods that are combined with LMD for other
applications. Table 8 summarizes the classifiers that are
combined with LMD for other applications.

Table 7 Signal processing methods combined with LMD for other applications

Classifier Application Feature extraction method

High voltage circuit breakers LMD+TSEE + SVDD [127]
FCM Shearer cutting LMD + Time-frequency analysis + LS [129]

Wind turbine ELMD + Singular values [130]

ELM Pipeline LMD + Information entropy [131]

LR Hydraulic pump LMD + PCA [132]

Natural gas pipeline
LMD + Wavelet packet decomposition +

Envelope spectrum entropy [122]
Diesel engine LMD + Fault characteristics [133]

SVM Analog circuit LMD + Correlation analysis [134]
Shearer cutting LMD+ MFE [48]
Hydraulic pump LMD + SVD [125] LMD + Approximate entropy [135]

Reciprocating compressor LMD+MSE [136]

Sparse representation classifiers Natural gas pipeline ELMD + Kullback-Leibler divergence [128]

RWSVM Natural gas pipeline LMD + PCA [126]

BP
Reciprocating compressor gas valve

LMD + Lempel-Ziv complexity [121] LMD +
Autoregressive-generalized autoregressive
conditional heteroscedasticity model [137]

Subway auxiliary inverter LMD + Approximate entropy [138]

Classifier Applications Feature extraction method

Table 8 Other applications using LMD-based combination methods

Technique Application Reference

CBSR + LMD Reciprocating compressor [123]
LMD + IAMMA Hydraulic pump [124]

ELMD + Kullback-Leibler divergence + HAF Natural gas pipeline [42]
LMD+ Independent component analysis (ICA) Biomedical source separation [28]

LMD+Time-frequency entropy DC traction power supply system [139]
LMD+Detrended fluctuation analysis (DFA) Ionospheric scintillation [140]

WT+ LMD Hydro turbine [141]

4. Summary

There are many successful applications of the LMD in
fault diagnosis of gears, bearings and rotors. A summary
is given as follows.

(i) The applications of LMD and its variants are mainly
performed for key components of the rotating machin-
ery such as gears, rotors and bearings. This is because
these components are critical components of a machine
and the failure of these components will cause serious con-
sequence on the whole machine.

(ii) LMD has shortcomings such as end effects, mode
mixing, and difficulties to determine the sliding step size
and the iteration stop criterion. Many improvements have
been done by now. For example, ELMD is proposed for ad-
dressing mode mixing, spline-LMD is developed for slid-

ing step selection, and an integral extension LMD is de-
signed for solving end effects.

(iii) Some side effects may occur in the improved LMD
methods, which should get users’ special attention in ap-
plying these methods. For example, the rational spline
function is used in RS-LMD to estimate the local mean
function and envelope estimate function (moving average
is used in the original LMD). This improvement can avoid
the phase difference of PFs and step size selection, which
makes the decomposition result more accurate and gives
higher computation efficiency. However, RS-LMD has its
new problems. For example, the selection of the tension
parameter becomes more difficult. An unsuitable tension
parameter may make the decomposition result of RS-LMD
worse than that of the spline-based LMD method.

(iv) LMD-based combination methods perform well in
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detecting machine faults especially weak faults. In the be-
ginning, LMD is not designed for fault diagnosis. Later,
researchers introduce LMD for fault diagnosis by observ-
ing the time domain and frequency domain plots of each
PF component. However, it is hard to find some mecha-
nical faults, especially weak faults, by conducting time-
frequency analysis on PF components. Some researchers
start to combine LMD with other methods such as sig-
nal processing methods or machine learning methods. The
LMD-based combination methods can not only diagnose
more types of faults but also give more accurate results.
However, the determination of many model parameters is
hard and very often expert experiences are needed.

5. Prospects

LMD, proposed in 2005 by Smith, has been widely used
in the fault diagnosis of the rotating machinery and many
improvements have been made on LMD. However, there
are still some issues we can work on to address.

(i) It is necessary to develop a multivariate LMD. As we
know, multiple channels of data are often acquainted to-
gether. The dependence of these signals should be studied
and the improved LMD should be able to deal with data
from multiple channels, simultaneously.

(ii) Repeatability tests and tests on multiple machines
are required to develop robust fault diagnosis methods.
Many methods are tested to be effective on one set of data
or one experimental test rig. Repeatability tests and tests
on multiple machines are required for these methods to be
used in real applications.

(iii) The efficiency should be further improved. Many
methods are developed to improve the fault diagnosis per-
formance at a cost of decreasing computational efficiency.
It is important to improve the computational efficiency of
LMD-based methods to satisfy online health monitoring
requirements.

(iv) The sifting stop criterion of LMD has a strong effect
on the orthogonality between PFs and their corresponding
instantaneous frequencies. However, it is difficult to satisfy
the theoretical condition lim

n→∞ a1n(t) = 1 in real applica-

tions. Further study about the sifting stop criterion is still
required.

(v) Some outliers or wild points may be generated in the
sifting process (for example, the interpolation during enve-
lope estimations may generate outliers), which may lead to
extremely bad decomposition results. This problem is of-
ten ignored by researchers. In our opinion, further studies
should be conducted to avoid these outliers in the sifting
process.
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