Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (5): 1267-1284.doi: 10.23919/JSEE.2023.000067
收稿日期:
2022-07-12
出版日期:
2023-10-18
发布日期:
2023-10-30
Feng WU1,*(), Xiuluo LIU1(), Jia WANG1(), Chao LI2(), Ying LIU1(), Jianbin SU1(), Ailiang ZHANG1(), Min WANG1()
Received:
2022-07-12
Online:
2023-10-18
Published:
2023-10-30
Contact:
Feng WU
E-mail:2904099828@qq.com;glenliu@263.net;kelexuebi2009@163.com;446591391@qq.com;fq_1982@126.com;sujianbin1983@163.com;zhangailiang1966@126.com;2548181884@qq.com
About author:
. [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1267-1284.
Feng WU, Xiuluo LIU, Jia WANG, Chao LI, Ying LIU, Jianbin SU, Ailiang ZHANG, Min WANG. Research on agile space emergency launching mission planning simulation and verification method[J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1267-1284.
"
Orbital height/km | SSO | LEO | Retrograde orbit | Summation | |||||||||||
T-Q | S-Q | S-R/% | T-Q | S-Q | S-R/% | T-Q | S-Q | S-R/% | T-Q | S-Q | S-R/% | ||||
268 | 0 | 0 | - | 0 | 0 | - | 54 | 49 | 90.74 | 54 | 49 | 90.74 | |||
286 | 0 | 0 | - | 0 | 0 | - | 52 | 43 | 82.69 | 52 | 43 | 82.69 | |||
300 | 52 | 49 | 94.23 | 48 | 43 | 89.58 | 52 | 45 | 86.54 | 152 | 137 | 90.13 | |||
400 | 0 | 0 | - | 24 | 24 | 100 | 0 | 0 | - | 24 | 24 | 100 | |||
500 | 52 | 50 | 96.15 | 48 | 46 | 95.83 | 0 | 0 | - | 100 | 96 | 96 | |||
700 | 52 | 49 | 94.23 | 24 | 23 | 95.83 | 0 | 0 | - | 76 | 72 | 94.74 | |||
Summation | 156 | 148 | 94.87 | 144 | 136 | 94.44 | 158 | 137 | 86.71 | 458 | 421 | 91.92 |
"
Satellite | Launching time window (UTC time) | ||
Launching area 1 | Launching area 2 | Launching area 3 | |
The first orbital plane No.1-3 satellite | March 18, 2022 22:23:58.575−22:24:20.931 | —— | —— |
The first orbital plane No.4-6 satellite | —— | March 18, 2022 00:32:55.090−00:32:57.466 | —— |
The second orbital plane No.1-3 satellite | March 18, 2022 04:22:03.49−04:22:23.732 | —— | —— |
The second orbital plane No.4-6 satellite | —— | March 18, 2022 06:28:44.850−06:28:55.940 | —— |
The third orbital plane No.1-3 satellite | March 18, 2022 11:43:38.056−11:44:16.717 | —— | —— |
The third orbital plane No.4-6 satellite | —— | March 18, 2022 12:24:38.860−12:24:50.151 | —— |
The fourth orbital plane No.1-3 satellite | March 18, 2022 17:39:29.764−17:40:08.737 | —— | —— |
The fourth orbital plane No.4-6 satellite | —— | —— | March 18, 2022 14:05:58.264−14:06:15.460 |
1 | ZHANG D C, FAN Z Z Research on mission planning and launching flow of solid rocket emergency launching. Modern Defence Technology, 2018, 46 (6): 122- 128. |
2 | CAI Y Z, HE S F, GU Z F, et al Mission planning of operationally responsive space for solid launching vehicle. Modern Defence Technology, 2021, 49 (1): 107- 115. |
3 |
HU J X, HUANG H, YANG L P, et al A multi-objective optimization framework of constellation design for emergency observation. Advances in Space Research, 2021, 67 (1): 531- 545.
doi: 10.1016/j.asr.2020.09.031 |
4 |
TOMER S, PINI G Low Earth orbit satellite constellation for regional positioning with prolonged coverage durations. Advances in Space Research, 2019, 63 (8): 2469- 2494.
doi: 10.1016/j.asr.2019.01.010 |
5 |
ZHANG S Y, ZHU Z C, HU H Y, et al Research on task satellite selection method for space object detection leo constellation based on observation window projection analysis. Aerospace, 2021, 8 (6): 156.
doi: 10.3390/aerospace8060156 |
6 |
WEN J, LIU X L, HE L Real-time online rescheduling for multiple agile satellites with emergent tasks. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1407- 1420.
doi: 10.23919/JSEE.2021.000120 |
7 | Teledyne Brown Engineering Inc. EADSIM executive summary. http://www.eadsim .com/EADSIMExecSum.pdf. |
8 | Ternion Corporation. FLAMES modeling & simulation software by Ternion. http://www.ternion.com. |
9 | DANIEL T M. An overview of the joint warfare system (JWARS). Mclean: MITRE Corporation, 2000. |
10 | ANDY B, DAVID P. Multi-resolution modeling in the JTLS-JCATS federation. Mclean: MITRE Corporation, 2003. |
11 | SU Y T, HOU L, LI Y F Tactical maneuver model design and implementation on extensible simulation platform. Fire Control & Command Control, 2019, 44 (5): 125- 130. |
12 | XU L, LIN S Y, HLYNKA A W, et al Distributed simulation platforms and data passing tools for natural hazards engineering: reviews, limitations, and recommendations. International Journal of Disaster Risk Science, 2021, 12 (2): 617- 634. |
13 |
GAO F, ZANG A, BI W H Weapon system operational effectiveness evaluation based on the belief rule-based system with interval data. Journal of Intelligent and Fuzzy Systems, 2020, 39 (5): 6687- 6701.
doi: 10.3233/JIFS-190651 |
14 |
GU Y, HAN C, CHEN Y H, et al Mission replanning for multiple agile earth observation satellites based on cloud coverage forecasting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 594- 608.
doi: 10.1109/JSTARS.2021.3135529 |
15 | ZHUO H H, KAMBHAMPATI S Model-lite planning: cased-based vs. model-based approaches. Artificial Intelligence, 2017, 246, 1- 21. |
16 |
HASLUM P, IVANKOVIC F, RAMIREZ M, et al Extending classical planning with state constraints: heuristics and search for optimal planning. Journal of Artificial Intelligence Research, 2018, 62, 373- 431.
doi: 10.1613/jair.1.11213 |
17 |
SOLEYMANI M, FAKOOR M, BAKHTIARI M Optimal mission planning of the reconfiguration process of satellite constellations through orbital maneuvers: a novel technical framework. Advances in Space Research, 2019, 63 (10): 3369- 3384.
doi: 10.1016/j.asr.2019.02.003 |
18 |
FAKOOR M, BAKHTIARI M, SOLEYMANI M Optimal design of the satellite constellation arrangement reconfiguration process. Advances in Space Research, 2016, 58 (3): 372- 386.
doi: 10.1016/j.asr.2016.04.031 |
19 | NIU C H, LI A J, HUANG X, et al. Research on global dynamic path planning method based on improved A* algorithm. Mathematical Problems in Engineering, 2021, 2021: 1−13. |
20 | LI H M, XIANG S W, JIA W S, et al Solving multiobjective game in multiconflict situation based on adaptive differential evolution algorithm with simulated annealing. Mathematical Problems in Engineering, 2021, 2021 (1): 1- 11. |
21 | WEI Z F, CHENG Y, GUO X X, et al Hybrid trajectory optimization method and tracking guidance for variable-sweep missiles. Mathematical Problems in Engineering, 2021, 2021, 1- 14. |
22 |
MORGADO F M P, MARTA A C, GIL P S Multistage rocket preliminary design and trajectory optimization using a multidisciplinary approach. Structural and Multidisciplinary Optimization, 2022, 65 (7): 192.
doi: 10.1007/s00158-022-03285-y |
23 |
CAMPOS L, GIL P The two-point boundary-value problem for rocket trajectories. Aerospace, 2020, 7 (9): 131.
doi: 10.3390/aerospace7090131 |
24 | BORIS B, ALESSANDRO Z, GUIDO C, et al Convex approach to three-dimensional launch vehicle ascent trajectory optimization. Journal of Guidance, Control, and Dynamics, 2021, 44 (2): 1- 16. |
25 |
DENG W, SHANG S F, CAI X, et al An improved differential evolution algorithm and its application in optimization problem. Soft Computing, 2021, 25 (7): 5277- 5298.
doi: 10.1007/s00500-020-05527-x |
26 |
VISHNU S N, ARAVIND V Ascent trajectory design and optimization of a two-stage throttleable liquid rocket. Advances in Space Research, 2022, 69 (12): 4358- 4375.
doi: 10.1016/j.asr.2022.03.023 |
27 | ZHU L H, WANG Y, WU Z Q, et al The intelligent trajectory optimization of multistage rocket with gauss pseudo-spectral method. Intelligent Automation & Soft Computing, 2022, 33 (1): 291- 303. |
28 | LORENZO F, ALESSANDRO Z, GUIDO C, et al Integrated optimization of first-stage SRM and ascent trajectory of multistage launch vehicles. Journal of Spacecraft and Rockets, 2021, 58 (4): 1- 12. |
29 |
MAHJUB A, MAZLAN N M, ABDULLAH M Z, et al Design optimization of solid rocket propulsion: a survey of recent advancements. Journal of Spacecraft and Rockets, 2020, 57 (1): 3- 11.
doi: 10.2514/1.A34594 |
30 | BENEDIKTER B, ZAVOLI A, COLASURDO G, et al. Convex optimization of launch vehicle ascent trajectory with heat flux and splash-down constraints. Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 2020: 1–20. |
31 | BAI X Z, CHEN L A rapid algorithm of space debris collision probability based on space compression and infinite series. Acta Mathematicae Applicatae Sinica, 2009, 32 (2): 336- 353. |
32 | BAI X Z, CHEN L, ZHANG Y, et al Survey on collision assessment and warning techniques for space object. Journal of Astronautics, 2013, 34 (8): 1027- 1039. |
33 |
BAI X Z, CHEN L Explicit expression and influencing factor analysis of collision probability between space objects. Chinese Journal of Space Science, 2009, 29 (4): 422- 431.
doi: 10.11728/cjss2009.04.422 |
34 |
RANA T EX-MAN component model for component-based software construction. Arabian Journal for Science and Engineering, 2020, 45, 2915- 2928.
doi: 10.1007/s13369-019-04213-x |
35 |
NICOLA R D, MAGGI A, SIFAKIS J The dream framework for dynamic reconfigurable architecture modelling: theory and applications. International Journal on Software Tools for Technology Transfer, 2020, 22 (4): 437- 455.
doi: 10.1007/s10009-020-00555-2 |
36 | REISIG W. Composition of component models-a key to construct big systems. Proc. of the 9th International Symposium on Leveraging Application of Formal Methods, 2020. DOI: 10.1007/978-3-030-61470-6_11. |
37 |
DUAN J H, LIU Y F Two-dimensional launch window method to search for launch opportunities of interplanetary missions. Chinese Journal of Aeronautics, 2020, 33 (3): 965- 977.
doi: 10.1016/j.cja.2019.12.010 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||