Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (4): 924-938.doi: 10.23919/JSEE.2023.000094
• • 上一篇
收稿日期:
2021-12-04
出版日期:
2023-08-18
发布日期:
2023-08-28
Jun ZHOU1,2,3(), Hao ZHANG1(), Guanghui LIU1,2,3,*(), Cheng CHENG1,2,3(), Jiaolong ZHANG1,2,3()
Received:
2021-12-04
Online:
2023-08-18
Published:
2023-08-28
Contact:
Guanghui LIU
E-mail:zhoujun@nwpu.edu.cn;aiwuzh2016@163.com;liuguanghui@nwpu.edu.cn;cheng.cheng@nwpu.edu.cn;zhangjiaolong@nwpu.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 924-938.
Jun ZHOU, Hao ZHANG, Guanghui LIU, Cheng CHENG, Jiaolong ZHANG. Modular flexible “Tetris” microsatellite platform based on sandwich assembly mode[J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 924-938.
"
Type | Dimension | Function | Display |
General module | 1U module (100 mm×100 mm×113.5 mm) | House-keeping | |
GPS | | ||
Data transmission | | ||
2U module (100 mm×100 mm×227 mm) | Power | | |
Sensor | | ||
Control | | ||
3U module (100 mm×100 mm×340.5 mm) | Payload | | |
Transfer module | Sandwich structure (100 mm×100 mm×15.1 mm) | Connection | |
Special module | Solar panel (89 mm×98 mm×1.5 mm) | Power supply | |
"
Interface to be tested | Experimental basis | Experimental device |
Mechanical interface | Tensile strength | Tension tester with a range of 0−500 |
A testing computer | ||
Electric interface | Ohm’s law and power principle | An ohmmeter with a measurement range of 0−200 |
Dual-channel digital power with 0−30 | ||
A 4-channel oscilloscope with a sampling rate of 1 GS/s | ||
A 10 | ||
Data interface | Signal attenuation and distortion | A signal generator |
A 4-channel oscilloscope with a sampling rate of 1 GS/s | ||
Thermal interface | Fourier’s law and Joule’s law | A film heater |
A dual-channel digital power that can provide two 12 | ||
The temperature sensor (PT100) | ||
A 4-channel temperature transmitter | ||
A thermostat | ||
A testing computer |
1 |
MARIA A V, NICOLE V, SABRINA C, et al Interplanetary CubeSats system for space weather evaluations and technology demonstration. Acta Astronautica, 2014, 104 (2): 516- 525.
doi: 10.1016/j.actaastro.2014.06.005 |
2 |
ADDAIM A, KHERRAS A, ZANTOU E B DSP implementation of integrated store-and-forward APRS payload and OBDH subsystems for low-cost small satellite. Aerospace Science and Technology, 2008, 12 (4): 308- 317.
doi: 10.1016/j.ast.2007.08.002 |
3 |
GAUDENZI P, ATEK S, CARDINI V, et al Revisiting the configuration of small satellites structures in the framework of 3D additive manufacturing. Acta Astronautica, 2018, 146, 249- 258.
doi: 10.1016/j.actaastro.2018.01.036 |
4 |
KOPACZ J R, HERSCHITZ R, RONEY J Small satellites an overview and assessment. Acta Astronautica, 2020, 170, 93- 105.
doi: 10.1016/j.actaastro.2020.01.034 |
5 |
WU S F, ZHAO T C, GAO Y, et al Design and implementation of a cube satellite mission for antarctic glacier and sea ice observation. Acta Astronautica, 2017, 139, 313- 320.
doi: 10.1016/j.actaastro.2017.07.023 |
6 |
YU X Z, ZHOU J, ZHU P J, et al Star of AOXiang: an innovative 12U CubeSat to demonstrate polarized light navigation and microgravity measurement. Acta Astronautica, 2018, 147, 97- 106.
doi: 10.1016/j.actaastro.2018.03.014 |
7 |
PALLICHADATH V, TURMAINE L, MELAIKA A, et al In-orbit micro-propulsion demonstrator for pico-satellite applications. Acta Astronautica, 2019, 165, 414- 423.
doi: 10.1016/j.actaastro.2019.09.004 |
8 |
HUANG P F, WANG M, MENG Z J, et al Attitude takeover control for post-capture of target spacecraft using space robot. Aerospace Science and Technology, 2016, 51, 171- 180.
doi: 10.1016/j.ast.2016.02.006 |
9 |
NIETO P C, EMAMI M R CubeSat mission: from design to operation. Applied Science, 2019, 9 (15): 3110.
doi: 10.3390/app9153110 |
10 | ESHAQ M, IBRAHIM A M, EISAAL S, et al. Information processing and digital communications in a modular satellite. Proc. of the 4th International Conference on Signal Processing and Information Security, 2021: 72−75. |
11 |
CAO X B Flexible platform based micro-satellite design method. Aerospace Science and Technology, 2016, 53, 162- 168.
doi: 10.1016/j.ast.2016.03.012 |
12 | SYED M A, MUHAMMAD S B. Modular & COTS based power system for small LEO satellite. Proc. of the International Conference on Aerospace Science & Engineering, 2013: 1−3. |
13 | SONG Q L, YE D, SUN Z W, et al Autonomous reconfiguration of homogeneous pivoting cube modular satellite by deep reinforcement learning. Proc. of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2021, 235 (10): 1777- 1786. |
14 | OSTERLOH T, DAHMEN U, ROBMANN J. Full lifecycle support for modular satellite systems provided by comprehensive virtual testbeds. Proc. of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2018: 1−8. |
15 |
RIZWAN M M, ANWAR A, LEONARDO M R Plug-and-play design approach to smart harness for modular small satellites. Acta Astronautica, 2014, 94 (2): 754- 764.
doi: 10.1016/j.actaastro.2013.09.015 |
16 | OSTERLOH T, ROSSMANN J. A rigid body dynamics simulation framework for the analysis of attitude control systems of modular satellite systems. Proc. of the IEEE International Systems Conference, 2019: 1−8. |
17 | HUANG P F, CHANG H T, LU Z Y, et al Key techniques of on-orbit service-oriented reconfigurable cellularized satellite and its prospects. Journal of Astronautics, 2016, 36 (1): 1- 10. |
18 | MCDERMOTT S. Aeroastro ’s smart-bus: a low-cost modular approach enabling responsive space missions. Proc. of the AIAA 3rd Responsive Space Conference, 2005: 20–26. |
19 | NAKASUKA S, SAHARA H, SUGAWARA Y, et al. A novel satellite concept “Panel Extension Satellite (PETSAT)” consisting of plug-in, modular, functional panels. Proc. of the 21st Annual AIAA/USU Conference on Small Satellites, 2007. https://digitalcommons.usu.edu/smallsat/2007/all2007/37/. |
20 | YOSHIKI S, HIRONORI S, SHINICHI N, et al A satellite for demonstration of panel extension satellite (PETSAT). Acta Astronautica, 2008, 63 (1/4): 228- 237. |
21 | SHINICHI N, YOSHIKI S, HIRONORI S, et al. System design and control aspect of a novel satellite concept “panel extension satellite (PETSAT). Proc. of the 17th IFAC World Congress, 2008: 6−11. |
22 | YOSHIKI S, SHINICHI N, KENJI H, et al Structure and thermal control of panel extension satellite (PETSAT). Acta Astronautica, 2009, 65 (7/8): 958- 966. |
23 | JAMES L, KYLE Z, EVA B, et al. SPARC-1: a joint US/Sweden multi-mission modular nanosatellite platform. Proc. of the IEEE Aerospace Conference, 2016: 1−16. |
24 | KORTMANN M, SCHERVAN T, SCHMIDT H, et al. Building block–based “iBOSS” approach: fully modular systems with standard interface to enhance future satellites. Proc. of the 66th International Astronautical Congress, 2015: 1−11. |
25 | JANSEN F, BRANDT T, DAFNIS A, et al. INPPS flagship with iBOSS building blocks. Proc. of the International Astronautical Congress, 2019. https://elib.dlr.de/134395/. |
26 | KORTMANN M, MEINERT T, SCHRODER K, et al. Design and qualification of a multifunctional interface for modular satellite systems. Proc. of the 69th International Astronautical Congress, 2018: 1−5. |
27 | SCHERVANA T A, KREISELB J, SCHROEDERC D, et al. New horizons for exploration via flexible concepts based on building blocks using the standardized ISSI (intelligent space system interface) modular coupling kit by iBOSS. Proc. of the Global Space Exploration Conference, 2021: 14−18. |
28 | BARNHART D, SULLIVAN B, HUNTER R, et al. Phoenix program status - 2013. Proc. of the AIAA SPACE Conference and Exposition, 2013: 5341. |
29 | SULLIVAN B, BARNHART D, HILL L, et al. DARPA Phoenix payload orbital delivery system (PODs): “FedEx to GEO”. Proc. of the AIAA SPACE Conference and Exposition, 2013: 5484. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||