Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (4): 894-905.doi: 10.23919/JSEE.2023.000059
• • 上一篇
收稿日期:
2022-01-04
出版日期:
2023-08-18
发布日期:
2023-08-28
Siyu CHEN(), Yong WANG(), Rui CAO()
Received:
2022-01-04
Online:
2023-08-18
Published:
2023-08-28
Contact:
Yong WANG
E-mail:21b905043@stu.hit.edu.cn;wangyong6012@hit.edu.cn;caor@hit.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 894-905.
Siyu CHEN, Yong WANG, Rui CAO. A high frequency vibration compensation approach for ultrahigh resolution SAR imaging based on sinusoidal frequency modulation Fourier-Bessel transform[J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 894-905.
"
Parameter | Value | Parameter | Value | |
Carrier frequency/GHz | 37.5 | Wavelength/m | 0.008 | |
Doppler bandwidth/Hz | 5 000 | Bandwidth/GHz | 5 | |
Range resolution/m | 0.03 | Pulse repetition frequency/Hz | 6250 | |
Azimuth resolution/m | 0.04 | Pulse width/μs | 10 | |
Depression angle/(°) | 45 | Sampling rate/GHz | 6 | |
Synthetic aperture time/s | 2.1213 | Platform height/m | 3 000 | |
Vibration amplitude/mm | 3.9598 | Aircraft speed/(m·s−1) | 200 | |
Vibration frequency/Hz | 20 | SNR/dB | 10 | |
Vibration initial phase/rad | 0 | − | − |
1 |
XIONG X Y, LI G, MA Y H, et al New slant range model and azimuth perturbation resampling based high-squint maneuvering platform SAR imaging. Journal of Systems Engineering and Electronics, 2021, 32 (3): 545- 558.
doi: 10.23919/JSEE.2021.000046 |
2 |
FANG J, HU S H, MA X L SAR image de-noising via grouping-based PCA and guided filter. Journal of Systems Engineering and Electronics, 2021, 32 (1): 81- 91.
doi: 10.23919/JSEE.2021.000009 |
3 |
FANG F, HE R R, XU W, et al Study on precise satellite attitude maneuvering strategy for ultrahigh resolution spaceborne SAR imaging. IEEE Access, 2021, 9, 127226- 127239.
doi: 10.1109/ACCESS.2021.3111193 |
4 | JIN Y H, CHEN J L, XIA X G, et al Ultrahigh-resolution autofocusing for squint airborne SAR based on cascaded MD-PGA. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4017305. |
5 | LIN H, CHEN J L, XING M D, et al Time-domain autofocus for ultrahigh resolution SAR based on azimuth scaling transformation. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 527812. |
6 |
SHI H Y, ZHOU Q X, YANG X Y, et al SAR imaging method for sea scene target based on improved phase retrieval algorithm. Journal of Systems Engineering and Electronics, 2016, 27 (6): 1176- 1182.
doi: 10.21629/JSEE.2016.06.06 |
7 | HUANG Z W, HE Z H, SUN Z Y, et al Analysis and compensation of vibration error of high frequency synthetic aperture radar. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2016, 1138- 1141. |
8 | SUN W, SUN J P, ZHANG Y, et al Terahertz ViSAR vibration compensation imaging algorithm for large strabismus helicopter. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (12): 2755- 2761. |
9 | WANG H, ZHANG Y, WANG B B, et al A novel helicopter-borne terahertz SAR imaging algorithm based on Keystone transform. Proc. of the 12th International Conference on Signal Processing, 2014, 1958- 1962. |
10 | XIA H T, CHEN Q, LI Y W, et al A high frequency vibration compensation approach in terahertz SAR based on wavelet multi-resolution analysis. Proc. of the China International SAR Symposium, 2018, 10796- 10803. |
11 |
WANG Y, WANG Z F, ZHAO B, et al Enhancement of azimuth focus performance in high-resolution SAR imaging based on the compensation for sensors platform vibration. IEEE Sensors Journal, 2016, 16 (16): 6333- 6345.
doi: 10.1109/JSEN.2016.2584622 |
12 |
LI Y W, WU Q, WU J W, et al Estimation of high-frequency vibration parameters for terahertz SAR imaging based on FrFT with combination of QML and RANSAC. IEEE Access, 2021, 9, 5485- 5496.
doi: 10.1109/ACCESS.2020.3047856 |
13 |
LI Y W, DING L, ZHENG Q B, et a A novel high-frequency vibration error estimation and compensation algorithm for THz-SAR imaging based on local FrFT. Sensors, 2020, 20 (9): 2669.
doi: 10.3390/s20092669 |
14 |
SHI S Y, LI C, HU J M, et al A high frequency vibration compensation approach for terahertz SAR based on sinusoidal frequency modulation fourier transform. IEEE Sensors Journal, 2021, 21 (9): 10796- 10803.
doi: 10.1109/JSEN.2021.3056519 |
15 |
SHI S Y, LI C, HU J M, et al Motion compensation for terahertz synthetic aperture radar based on subaperture decomposition and minimum entropy theorem. IEEE Sensors Journal, 2020, 20 (24): 14940- 14949.
doi: 10.1109/JSEN.2020.3010086 |
16 | DENG B, LI X, WANG H Q, et al. Theories & methods for SAR micro-motion target detection and imaging. Beijing: Science Press, 2014. |
17 |
ZHANG Y, SUN J P, LEI P, et al SAR-based paired echo focusing and suppression of vibrating targets. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52 (12): 7593- 7605.
doi: 10.1109/TGRS.2014.2314681 |
18 | XIA W J, HUANG L L. Target vibration estimation in SAR based on phase-analysis method. Eurasip Journal on Advances in Signal Processing, 2016, 2016: 94. |
19 | PENG B, WEI X Z, DENG B, et al. A sinusoidal frequency modulation fourier transform for radar-based vehicle vibration estimation. IEEE Trans. on Instrumentation and Measurement, 2014, 63(9): 2188−2199. |
20 |
YANG Q, DENG B, WANG H Q, et al Parameter estimation and image reconstruction of rotating targets with vibrating interference in the terahertz band. Journal of Infrared Millimeter and Terahertz Waves, 2017, 38 (7): 909- 928.
doi: 10.1007/s10762-017-0390-1 |
21 |
WANG Q, PEPIN M, WRIGHT A, et al Reduction of vibration-induced artifacts in synthetic aperture radar imagery. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52 (6): 3063- 3073.
doi: 10.1109/TGRS.2013.2269138 |
22 |
WANG Q, PEPIN M, BEACH R, et al SAR-based vibration estimation using the discrete fractional fourier transform. IEEE Trans. on Geoscience and Remote Sensing, 2012, 50 (10): 4145- 4156.
doi: 10.1109/TGRS.2012.2187665 |
23 | LIANG Y, LI G F, ZHANG G, et al. A nonparametric paired echo suppression method for helicopter-borne SAR imaging. IEEE Geoscience and Remote Sensing Letters, 2020, 17, (12): 2080−2084. |
24 | LIU Q X, HE F. Adaptive image formation algorithm for THz-SAR based on automatic motion compensation. Proc. of the IEEE Asia-Pacific Conference on Antennas and Propagation, 2018: 179−180. |
25 | LATHI B P. Signal processing & linear systems. Cary: Oxford University Press, 1998. |
26 | ZHAO Y L, ZHANG Q Y, C, LI C, et al Vibration error analysis and motion compensation of video synthetic aperture radar. Journal of Radars, 2015, 4 (2): 230- 239. |
27 | ZHANG X C, ZHANG Y X, SUN J P. Effects analysis of helicopter platform vibration on terahertz SAR imaging. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(2): 205−211. |
28 | HE Q F, ZHANG Q, LUO Y et al. A sinusoidal frequency modulation Fourier-Bessel transform and its application to micro-Doppler feature extraction. Journal of Radars, 2018, 7(5): 593−601. (in Chinese) |
29 | WANG Z F, WANG Y, XU L. Parameter estimation of hybrid linear frequency modulation-sinusoidal frequency modulation Signal. IEEE Signal Processing Letters, 2017, 24(8): 1238−1241. |
30 | CAO R, WANG Y, ZHAO B, et al. Ship target imaging in airborne SAR system based on automatic image segmentation and ISAR technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1985−2000. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||