1 |
BUCKER H P Use of calculated sound fields and matched-field detection to locate sound sources in shallow water. The Journal of the Acoustical Society of America, 1976, 59 (2): 368- 373.
doi: 10.1121/1.380872
|
2 |
KLEMM R Range and depth estimation by line arrays in shallow water. Signal Processing, 1981, 3 (4): 333- 344.
doi: 10.1016/0165-1684(81)90003-7
|
3 |
BAGGEROER A B Matched field processing: source localization in correlated noise as an optimum parameter estimation problem. The Journal of the Acoustical Society of America, 1988, 83 (2): 571- 587.
doi: 10.1121/1.396151
|
4 |
MICHALOPOULOU Z H, PORTER M B Matched-field processing for broad-band source localization. IEEE Journal of Oceanic Engineering, 1996, 21 (4): 384- 392.
doi: 10.1109/48.544049
|
5 |
SOARES C, JESUS S M Broadband matched-field processing: coherent and incoherent approaches. The Journal of the Acoustical Society of America, 2003, 113 (5): 2587- 2598.
doi: 10.1121/1.1564016
|
6 |
YANG K D, MA Y L, ZOU S X, et al Linear matched field processing based on environmental perturbation. Acta Acustica, 2006, 31 (6): 496- 505.
|
7 |
STEINBERG B Z, BERAN M J, CHIN S H, et al A neural network approach to source localization. The Journal of the Acoustical Society of America, 1991, 90 (4): 2081- 2090.
doi: 10.1121/1.401635
|
8 |
NIU H Q, OZANICH E, GERSTOFT P Ship localization in Santa Barbara Channel using machine learning classifiers. The Journal of the Acoustical Society of America, 2017, 142 (5): EL455- EL460.
doi: 10.1121/1.5010064
|
9 |
WANG Y, PENG H Underwater acoustic source localization using generalized regression neural network. The Journal of the Acoustical Society of America, 2018, 143 (4): 2321- 2331.
doi: 10.1121/1.5032311
|
10 |
FERGUSON E L, WILLIAMS S B, JIN C T. Sound source localization in a multipath environment using convolutional neural networks. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2018: 2386−2390.
|
11 |
LIU Y N, NIU H Q, LI Z L Source ranging using ensemble convolutional networks in the direct zone of deep water. Chinese Physics Letters, 2019, 36 (4): 044302.
doi: 10.1088/0256-307X/36/4/044302
|
12 |
NIU H Q, GONG Z X, OZANICH E, et al Deep-learning source localization using multi-frequency magnitude-only data. The Journal of the Acoustical Society of America, 2019, 146 (1): 211- 222.
doi: 10.1121/1.5116016
|
13 |
HOWARTH K, KOMEN D, NEILSEN T B, et al Effect of signal to noise ratio on a convolutional neural network for source ranging and environmental classification. The Journal of the Acoustical Society of America, 2019, 146 (4): 2961- 2962.
|
14 |
KOMEN D, NEILSEN T B, KNOBLES D P, et al A convolutional neural network applied to measured time series for source range and ocean seabed classification. The Journal of the Acoustical Society of America, 2019, 146 (4): 2930.
|
15 |
KOMEN D, NEILSEN T B, HOWARTH K, et al Seabed and range estimation of impulsive time series using a convolutional neural network. The Journal of the Acoustical Society of America, 2020, 147 (5): EL403- EL408.
doi: 10.1121/10.0001216
|
16 |
OZANICH E, GERSTOFT P, NIU H Q A feedforward neural network for direction-of-arrival estimation. The Journal of the Acoustical Society of America, 2020, 147 (3): 2035- 2048.
doi: 10.1121/10.0000944
|
17 |
LIU Y N, NIU H Q, LI Z L A multi-task learning convolutional neural network for source localization in deep occan. The Journal of the Acoustical Society of America, 2020, 148 (2): 873- 883.
doi: 10.1121/10.0001762
|
18 |
CHEN R, SCHMIDT H Model-based convolutional neural network approach to underwater source-range estimation. The Journal of the Acoustical Society of America, 2021, 149 (1): 405- 420.
doi: 10.1121/10.0003329
|
19 |
WEISS K, KHOSHGOFTAAR T M, WANG D D A survey of transfer learning. Journal of Big Data, 2016, 3 (1): 1- 40.
doi: 10.1186/s40537-015-0036-x
|
20 |
DAI W Y, CHEN Y Q, XUE G R, et al. Translated learning: transfer learning across different feature spaces. Proc. of the Advances in Neural Information Processing Systems, 2008: 353−360.
|
21 |
ZHU Y, CHEN Y Q, LU Z Q, et al. Heterogeneous transfer learning for image classification. Proc. of the 25th Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence, 2011: 1304−1309.
|
22 |
NAKAMURA A, HARADA T. Revisiting fine-tuning for few-shot learning. https://arxiv.org/abs/1910.00216.
|
23 |
JANG Y H, LEE H K, HWANG S J, et al. Learning what and where to transfer. Proc. of the International Conference on Machine Learning, 2019: 3030–3039.
|
24 |
GERACE F, SAGLIETTU L, MANNELLI S S, et al Probing transfer learning with a model of synthetic correlated datasets. Machine Learning: Science and Technology, 2022, 3 (1): 015030.
doi: 10.1088/2632-2153/ac4f3f
|
25 |
WANG W B, NI H Y, SU L, et al Deep transfer learning for source ranging: deep-sea experiment results. The Journal of the Acoustical Society of America, 2019, 146 (4): EL317- EL322.
doi: 10.1121/1.5126923
|
26 |
CAO H G, WANG W B, SU L, et al Deep transfer learning for underwater direction of arrival using one vector sensor. The Journal of the Acoustical Society of America, 2021, 149 (3): 1699- 1711.
doi: 10.1121/10.0003645
|
27 |
PORTER M B. The KRAKEN normal mode program. Washington D.C.: Naval Research Lab, 1992.
|
28 |
YANG K D. The matched field processing of underwater acoustic array signals. Xi’an: Northwestern Polytechnical University Press, 2008. (in Chinese)
|
29 |
FUKUSHIMA K, MIYAKE S, ITO T Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans. on Systems, Man, and Cybernetics, 1982, 13 (5): 826- 834.
|
30 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770−778.
|
31 |
MUARRY J, ENSBERG D. The swellex-96 experiment. http://www.swellex96.ucsd.edu/.
|