12 |
SOUZA LEITE C F. A deep reinforcement learning algorithm for swarm robotics. Warsaw, Poland: Institute of Aeronautics and Applied Mechanics, 2018.
|
13 |
HUTTENRAUCH M, SOSIC A, NEUMANN G. Guided deep reinforcement learning for swarm systems. https://doi.org/10.48550/arXiv.1709.06011.
|
14 |
KERSANDT K. Deep reinforcement learning as control method for autonomous UAVs. Barcelona: Polytechnic University of Catalonia, 2018.
|
15 |
XUE X D, LI Z, ZHANG D S, et al A deep reinforcement learning method for mobile robot collision avoidance based on double DQN. Proc. of the IEEE 28th International Symposium on Industrial Electronics, 2019, 2131- 2136.
|
16 |
AN W, PARK C, HAN X, et al Hidden Markov model and auction-based formulations of sensor coordination mechanisms in dynamic task environments. IEEE Trans. on Systems, Man & Cybernetics: Part A, 2011, 41 (6): 1092- 1106.
|
17 |
TSITSIKLIS J N Asynchronous stochastic approximation and Q-learning. Machine Learning, 1994, 16 (3): 185- 202.
|
18 |
VINCENT F, RAPHAEL F, DAMIEN E. Playing Atari with deep reinforcement learning. https://doi.org/10.48550/arXiv.1312.5602.
|
19 |
HIKARU S, TADASHI H, SATORU K Experimental study on behavior acquisition of mobile robot by deep Q-network. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2017, 21 (5): 840- 848.
doi: 10.20965/jaciii.2017.p0840
|
1 |
SKJERVOLD E, HOELSRETER O T Autonomous, cooperative UAV operations using COTS consumer drones and custom ground control station. Proc. of the IEEE Military Communications Conference, 2019, 486- 492.
|
2 |
BARTON S L, WAYTOWICH N R, ZAROUKIAN E, et al Measuring collaborative emergent behavior in multi-agent reinforcement learning. Advances in Intelligent Systems and Computing, 2019, 876, 422- 427.
|
3 |
PHAM H, LA H, FEIL-SEIFER D, et al. Autonomous UAV navigation using reinforcement learning. https://doi.org/10.48550/arXiv.1801.05086.
|
4 |
PHAM H, FEIL-SEIFER D, FEIL-SEIFER D, et al. Cooperative and distributed reinforcement learning of drones for field coverage. https://doi.org/10.48550/arXiv.1803.07250.
|
5 |
PRICE J K, PINON-FISCHER O J, MAVRIS D N. Definition of optimal agent behaviors using reinforcement learning. Proc. of the AIAA SciTech Forum, 2019. DOI: 10.2514/6.2019-2200.
|
6 |
QI S Y, ZHU S C Intent-aware multi-agent reinforcement learning. Proc. of the IEEE International Conference on Robotics and Automation, 2018, 7533- 7540.
|
7 |
ZHANG W X, MA L, LI X N Multi-agent reinforcement learning based on local communication. Cluster Computing, 2019, 22 (6): 1- 10.
|
8 |
LIU Y X, HU L, TIAN Y L, et al Reinforcement learning based two-level control framework of UAV swarm for cooperative persistent surveillance in an unknown urban area. Aerospace Science and Technology, 2019, 98, 105671.
|
9 |
LUO D, YANG X U, ZHANG J New progresses on UAV swarm confrontation. Science & Technology Review, 2017, 35 (7): 26- 31.
|
10 |
OZSOYELLER D, TOKEKAR P Multi-robot symmetric rendezvous search on the line. IEEE Robotics and Automation Letters, 2021, 7 (1): 334- 341.
|
11 |
LI Q Y, DU X T, HUANG Y Z, et al. Learning of coordination policies for robotic swarms. https://doi.org/10.48550/arXiv.1709.06620.
|