Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (2): 324-334.doi: 10.23919/JSEE.2023.000018
• • 上一篇
收稿日期:
2021-09-27
出版日期:
2023-04-18
发布日期:
2023-04-18
Qingjian LI, Yan LIANG(), Zhenzhou LU(), Guangyi WANG()
Received:
2021-09-27
Online:
2023-04-18
Published:
2023-04-18
Contact:
Yan LIANG
E-mail:liangyan@hdu.edu.cn;luzhz@hdu.edu.cn;wanggyi@163.com
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 324-334.
Qingjian LI, Yan LIANG, Zhenzhou LU, Guangyi WANG. Threshold-type memristor-based crossbar array design and its application in handwritten digit recognition[J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 324-334.
"
Parameter | Value |
GL/S | 10−3 |
GH/S | 9×10−3 |
k | 0.1 |
p | 2 |
v1(t)/V | 5sin(400πt) |
v2(t)/V | |
"
Memristor number | Before | Training signal | After | |||
Amplitude/ V | Period/ μs | Duty/ % | Total time/ ms | |||
W11 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
W12 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
W13 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
W14 | 5 mS (0) | 13 | 10 | 12.5 | 0.1 | 4.9 mS (−1) |
W21 | 5 mS (0) | 13 | 10 | 12.5 | 0.1 | 5.1 mS (1) |
W22 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
W23 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
W24 | 5 mS (0) | − | − | − | − | 5 mS (0) |
W31 | 5 mS (0) | − | − | − | − | 5 mS (0) |
W32 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
W33 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
W34 | 5 mS (0) | 13 | 10 | 12.5 | 0.1 | 5.1 mS (1) |
W41 | 5 mS (0) | 13 | 10 | 12.5 | 0.1 | 4.9 mS (−1) |
W42 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
W43 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
W44 | 5.1 mS (1) | − | − | − | − | 5.1 mS (1) |
1 |
MA C, LUO Z, HUANG W C, et al Sub-nanosecond memristor based on ferroelectric tunnel junction. Nature Communications, 2020, 11 (1): 1439.
doi: 10.1038/s41467-020-15249-1 |
2 |
SERB A, CORNA A, GEORGE R, et al Memristive synapses connect brain and silicon spiking neurons. Scientific Reports, 2020, 10 (1): 32098971.
doi: 10.1038/s41598-020-58831-9 |
3 |
ZHU R H, TANG Z R, YE S Z, et al Memristor-based image enhancement: high efficiency and robustness. IEEE Trans. on Electron Devices, 2021, 68 (2): 602- 609.
doi: 10.1109/TED.2020.3045684 |
4 |
NAWROCKI R A, VOYLES R M, SHAHEEN S E A mini review of neuromorphic architectures and implementations. IEEE Trans. on Electron Devices, 2016, 63 (10): 3819- 3829.
doi: 10.1109/TED.2016.2598413 |
5 |
WANG J R, ZHUGE F Memristive synapses for brain-inspired computing. Advanced Materials Technologies, 2019, 4 (3): 1800544.
doi: 10.1002/admt.201800544 |
6 |
HUANG W, XIA X W, ZHU C, et al Memristive artificial synapses for neuromorphic computing. Nano-Micro Letters, 2021, 13 (1): 34138298.
doi: 10.1007/s40820-021-00618-2 |
7 |
MEAD C Neuromorphic electronic systems. Proceedings of the IEEE, 1990, 78 (10): 1629- 1636.
doi: 10.1109/5.58356 |
8 |
MARKOVIC D, MIZRAHI A, QUERLIOZ D, et al Physics for neuromorphic computing. Nature Reviews Physics, 2020, 2, 499- 510.
doi: 10.1038/s42254-020-0208-2 |
9 |
CHUA L O Memristor—the missing circuit element. IEEE Trans. on Circuit Theory, 1971, 18 (5): 507- 519.
doi: 10.1109/TCT.1971.1083337 |
10 |
CHUA L O The fourth element. Proceedings of the IEEE, 2012, 100 (6): 1920- 1927.
doi: 10.1109/JPROC.2012.2190814 |
11 |
STRUKOV D, SNIDER G, STEWART D, et al The missing memristor found. Nature, 2008, 453 (7191): 80- 83.
doi: 10.1038/nature06932 |
12 |
MEHONIC A, SEBASTIAN A, RAJENDRAN B, et al Memristors from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing. Advanced Intelligent Systems, 2020, 2 (11): 2000085.
doi: 10.1002/aisy.202000085 |
13 |
LIU Z W, TANG J S, GAO B, et al Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces. Nature Communications, 2020, 11 (1): 32843643.
doi: 10.1038/s41467-019-13993-7 |
14 |
XIA Q, YANG J J Memristive crossbar arrays for brain-inspired computing. Nature Materials, 2019, 18 (4): 309- 323.
doi: 10.1038/s41563-019-0291-x |
15 |
GIBSON G A, MUSUNURU S, ZHANG J Nanocsale memristor device as synapse in neuromorphic systems. Nano Letters, 2010, 10 (4): 1297- 1301.
doi: 10.1021/nl904092h |
16 |
KIM H, SAH M P, YANG C, et al Memristor bridge synapses. Proceedings of the IEEE, 2012, 100 (6): 2061- 2070.
doi: 10.1109/JPROC.2011.2166749 |
17 |
KIM H, GABA S, WHEELER D, et al A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Letters, 2012, 12 (1): 389- 395.
doi: 10.1021/nl203687n |
18 |
HU X F, DUAN S K, WANG L D, et al Memristive crossbar array with applications in image processing. Science China Information Sciences, 2012, 55 (2): 461- 472.
doi: 10.1007/s11432-011-4410-9 |
19 |
LI C, WANG Z R, RAO M Y, et al Long short-term memory networks in memristor crossbar arrays. Nature Machine Intelligence, 2019, 1 (1): 49- 57.
doi: 10.1038/s42256-018-0001-4 |
20 |
YAO P, WU H Q, GAO B, et al Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577 (7792): 641- 646.
doi: 10.1038/s41586-020-1942-4 |
21 |
YU Y B, YANG C Y, DENG Q X, et al Memristive network-based genetic algorithm and its application to image edge detection. Journal of Systems Engineering and Electronics, 2021, 32 (5): 1062- 1070.
doi: 10.23919/JSEE.2021.000091 |
22 |
YU Y B, YANG N J, YANG C Y, et al Memristor bridge-based low pass filter for image processing. Journal of Systems Engineering and Electronics, 2019, 30 (3): 448- 455.
doi: 10.21629/JSEE.2019.03.02 |
23 |
LIN P, LI C, WANG Z R, et al Three-dimensional memristor circuits as complex neural networks. Nature Electronics, 2020, 3 (4): 225- 232.
doi: 10.1038/s41928-020-0397-9 |
24 |
HU M, LI H, CHEN Y R, et al Memristor crossbar-based neuromorphic computing system: a case study. IEEE Trans. on Neural Networks and Learning Systems, 2014, 25 (10): 1864- 1878.
doi: 10.1109/TNNLS.2013.2296777 |
25 | LIU Q, WANG L D, DUAN S K An adaptive three-Gauss model based on memristive cross array and its application in image enhancement. Acta Physica Sinica, 2017, 66 (12): 300- 310. |
26 | ANDERSON D, MCNEILL G Artificial neural networks technology. Kaman Sciences Corporation, 1992, 258 (6): 22- 25. |
27 |
JOGLEKAR Y N, WOLF S J The elusive memristor: properties of basic electrical circuits. European Journal of Physics, 2009, 30 (4): 661- 675.
doi: 10.1088/0143-0807/30/4/001 |
28 | PERSHIN Y V, VENTRA M D SPICE model of memristive devices with threshold. Radioengineering, 2013, 22 (2): 485- 489. |
29 |
KVATINSKY S, RAMADAN M, FRIEDMAN E G, et al VTEAM: a general model for voltage-controlled memristors. IEEE Trans. on Circuits and Systems II-Express Briefs, 2015, 62 (8): 786- 790.
doi: 10.1109/TCSII.2015.2433536 |
30 |
SONG S, MILLER K D, ABBOTT L F Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 2000, 3 (9): 919- 926.
doi: 10.1038/78829 |
31 |
ZHAN C X, CHEN Y, YI M D, et al Recent progress in memristors for stimulating synaptic plasticity. Scientia Sinica Informationis, 2018, 48 (2): 115- 142.
doi: 10.1360/N112017-00022 |
32 | SCHUMAN C D, POTOK T E, PATTON R M, et al. A survey of neuromorphic computing and neural networks in hardware. https://arxiv.org/abs/1705.06963. |
33 | HAN J, MORAGA C The influence of the sigmoid function parameters on the speed of back propagation learning. Proc. of the International Workshop on Artificial Neural Networks, 1995, 930, 195- 201. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||