Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (2): 307-323.doi: 10.23919/JSEE.2023.000027
• • 上一篇
收稿日期:
2021-07-16
出版日期:
2023-04-18
发布日期:
2023-04-18
Yuyuan ZHANG(), Wenjun YAN(), Limin ZHANG(), Qing LING()
Received:
2021-07-16
Online:
2023-04-18
Published:
2023-04-18
Contact:
Wenjun YAN
E-mail:2932484433@qq.com;wj_yan@foxmail.com;iamzlm@163.com;lingqing19870522@163.com
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 307-323.
Yuyuan ZHANG, Wenjun YAN, Limin ZHANG, Qing LING. FOLMS-AMDCNet: an automatic recognition scheme for multiple-antenna OFDM systems[J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 307-323.
1 |
MEHRABI M, MOHAMMADKARIMI M, ARDAKANI M, et al Decision directed channel estimation based on deep neural network k-step predictor for MIMO communications in 5G. IEEE Journal on Selected Areas in Communications, 2019, 37 (11): 2443- 2456.
doi: 10.1109/JSAC.2019.2934004 |
2 | ELDEMERDASH Y A, DOBRE O A, ONER M Signal identification for multiple-antenna wireless systems: achievements and challenges. IEEE Communications Surveys & Tutorials, 2016, 18 (3): 1524- 1551. |
3 | ELDEMERDASH Y A, DOBRE O A, LIAO B J Blind identification of SM and alamouti STBC-OFDM signals. IEEE Trans. on Wireless Communications, 2015, 14 (2): 942- 982. |
4 |
KARAMI E, DOBRE O A Identification of SM-OFDM and AL-OFDM signals based on their second-order cyclostationarity. IEEE Trans. on Vehicular Technology, 2015, 64 (3): 942- 953.
doi: 10.1109/TVT.2014.2326107 |
5 | YAN W J, ZHANG L M, LING Q A method for blind recognition of STBC-OFDM signals based on FOLP. Acta Electronica Sinica, 2017, 45 (9): 2233- 2240. |
6 | MAREY M, DOBRE O A, INKOL R Novel algorithm for STBC-OFDM identification in cognitive radios. Proc. of the IEEE International Conference on Communications, 2013, 2770- 2774. |
7 |
MAREY M, DOBRE O A, INKOL R Blind STBC identification for multiple-antenna OFDM systems. IEEE Trans. on Communications, 2014, 62 (5): 1554- 1567.
doi: 10.1109/TCOMM.2014.030214.130875 |
8 | ZHANG L M, YU K Y, YAN W J, et al. Blind identification algorithm of time-domain STBC-OFDM based on feature sequence. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1524−1532. (in Chinese) |
9 |
ZENG Z G, CHEN X H, SONG Z H MGFN: a multi-granularity fusion convolutional neural network for remote sensing scene classification. IEEE Access, 2021, 9, 76038- 76046.
doi: 10.1109/ACCESS.2021.3081922 |
10 |
LI S Y, CHEN Y W, JIANG R X, et al Image denoising via multi-scale gated fusion network. IEEE Access, 2019, 7, 49392- 49402.
doi: 10.1109/ACCESS.2019.2910879 |
11 |
JIANG Y, TAN N, PENG T T, et al Retinal vessels segmentation based on dilated multi-scale convolutional neural network. IEEE Access, 2019, 7, 76342- 76352.
doi: 10.1109/ACCESS.2019.2922365 |
12 |
TIAN Y L, ZHANG Q S, REN Z L, et al Multi-scale dilated convolution network based depth estimation in intelligent transportation systems. IEEE Access, 2019, 7, 185179- 185188.
doi: 10.1109/ACCESS.2019.2960520 |
13 |
NIU Y L, LU Z W, WEN J, et al Multi-modal multi-scale deep learning for large-scale image annotation. IEEE Trans. on Image Processing, 2019, 28 (4): 1720- 1731.
doi: 10.1109/TIP.2018.2881928 |
14 |
LAI R, LI Y X, GUAN J T, et al Multi-scale visual attention deep convolutional neural network for multi-focus image fusion. IEEE Access, 2019, 7, 114385- 114399.
doi: 10.1109/ACCESS.2019.2935006 |
15 | WEN C R, HONG M J, YANG X H, et al Pulmonary nodule detection based on convolutional block attention module. Proc. of the Chinese Control Conference, 2019, 8583- 8587. |
16 |
HUANG G Y, GONG Y Y, XU Q Z, et al A convolutional attention residual network for stereo matching. IEEE Access, 2020, 8, 50828- 50842.
doi: 10.1109/ACCESS.2020.2980243 |
17 |
ZHOU S P, WANG J J, ZHANG J, et al Hierarchical U-shape attention network for salient object detection. IEEE Trans. on Image Processing, 2020, 29, 8417- 8428.
doi: 10.1109/TIP.2020.3011554 |
18 | SUN J, XIA S Y, SUN Z L, et al Cross-model deep feature fusion for face detection. IEEE Sensors Letters, 2020, 4 (9): 7003304. |
19 |
WANG Z J, CHEN B, LU R Y, et al FusionNet: an unsupervised convolutional variational network for hyperspectral and multispectral image fusion. IEEE Trans. on Image Processing, 2020, 29, 7565- 7577.
doi: 10.1109/TIP.2020.3004261 |
20 |
SHEN T Y, WANG J, GOU C, et al Hierarchical fused model with deep learning and type-2 fuzzy learning for breast cancer diagnosis. IEEE Trans. on Fuzzy Systems, 2020, 28 (12): 3204- 3218.
doi: 10.1109/TFUZZ.2020.3013681 |
21 |
LIU C, ZHOU W J, CHEN Y Z, et al Asymmetric deeply fused network for detecting salient objects in RGB-D images. IEEE Signal Processing Letters, 2020, 27, 1620- 1624.
doi: 10.1109/LSP.2020.3023349 |
22 |
WANG H F, LI J F Human action recognition algorithm based on multi-feature map fusion. IEEE Access, 2020, 8, 150945- 150954.
doi: 10.1109/ACCESS.2020.3017076 |
23 |
ZHAO Y F, XIE K, ZOU Z Z, et al Intelligent recognition of fatigue and sleepiness based on inceptionV3-LSTM via multi-feature fusion. IEEE Access, 2020, 8, 144205- 144217.
doi: 10.1109/ACCESS.2020.3014508 |
24 |
LIU X M, YU A, WEI X K, et al Multimodal MR image synthesis using gradient prior and adversarial learning. IEEE Journal of Selected Topics in Signal Processing, 2020, 14 (6): 1176- 1188.
doi: 10.1109/JSTSP.2020.3013418 |
25 |
HUANG G H, CHEN X P, CHEN J N, et al Multi-person pose estimation under complex environment based on progressive rotation correction and multi-scale feature fusion. IEEE Access, 2020, 8, 132514- 132526.
doi: 10.1109/ACCESS.2020.3010257 |
26 |
ZHOU H C, ZHU Y N, WNAG Q, et al Multi-scale dilated convolution neural network for image artifact correction of limited-angle tomography. IEEE Access, 2020, 8, 1567- 1576.
doi: 10.1109/ACCESS.2019.2962071 |
27 |
GAO H M, CHEN Z H, LI C M Hierarchical shrinkage multiscale network for hyperspectral image classification with hierarchical feature fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5760- 5772.
doi: 10.1109/JSTARS.2021.3083283 |
28 |
GONG M M, SHU Y M Real-time detection and motion recognition of human moving objects based on deep learning and multi-scale feature fusion in video. IEEE Access, 2020, 8, 25811- 25822.
doi: 10.1109/ACCESS.2020.2971283 |
29 |
GAO A, ZHU Y L, CAI W H, et al Pattern recognition of partial discharge based on VMD-CWD spectrum and optimized CNN with cross-layer feature fusion. IEEE Access, 2020, 8, 151296- 151306.
doi: 10.1109/ACCESS.2020.3017047 |
30 |
SUN L, YANG K L, HU X X, et al Real-time fusion network for RGB-D semantic segmentation incorporating unexpected obstacle detection for road-driving images. IEEE Robotics and Automation Letters, 2020, 5 (4): 5558- 5565.
doi: 10.1109/LRA.2020.3007457 |
31 |
CHEN H, DENG Y J, LI Y F, et al RGBD salient object detection via disentangled cross-modal fusion. IEEE Trans. on Image Processing, 2020, 29, 8407- 8416.
doi: 10.1109/TIP.2020.3014734 |
32 |
CUI S E, WANG R, WEI J H, et al Self-attention based visual-tactile fusion learning for predicting grasp outcomes. IEEE Robotics and Automation Letters, 2020, 5 (4): 5827- 5834.
doi: 10.1109/LRA.2020.3010720 |
33 |
DONG X H, ZHOU H Y, DONG J Y Texture classification using pair-wise difference pooling-based bilinear convolutional neural networks. IEEE Trans. on Image Processing, 2020, 29, 8776- 8790.
doi: 10.1109/TIP.2020.3019185 |
34 |
LI C X, HANG R L, RASTI B EMFNet: enhanced multisource fusion network for land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4381- 4389.
doi: 10.1109/JSTARS.2021.3073719 |
35 |
YE X C, SUN B L, WANG Z H, et al PMBANet: progressive multi-branch aggregation network for scene depth super-resolution. IEEE Trans. on Image Processing, 2020, 29, 7427- 7442.
doi: 10.1109/TIP.2020.3002664 |
36 |
LIU Y S, LIU Y B, DING L W, et al Scene classification based on two-stage deep feature fusion. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (2): 183- 186.
doi: 10.1109/LGRS.2017.2779469 |
37 |
ZHANG Z F, WANG C, GAN C Q, et al Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD. IEEE Trans. on Signal and Information Processing over Networks, 2019, 5 (3): 469- 478.
doi: 10.1109/TSIPN.2019.2900201 |
38 |
MA J T, QIU T S Automatic modulation classification using cyclic correntropy spectrum in impulsive noise. IEEE Wireless Communications Letters, 2019, 8 (2): 440- 443.
doi: 10.1109/LWC.2018.2875001 |
39 |
WU H, LI Y X, ZHOU L, et al Convolutional neural network and multi-feature fusion for automatic modulation classification. IET Electronics Letters, 2019, 55 (16): 895- 897.
doi: 10.1049/el.2019.1789 |
40 |
WANG Y, LIU M, YANG J, et al Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Trans. on Vehicular Technology, 2019, 68 (4): 4074- 4077.
doi: 10.1109/TVT.2019.2900460 |
41 |
YAN X, ZHANG G Y, WU H A novel automatic modulation classifier using graph-based constellation analysis for M-ary QAM. IEEE Communications Letters, 2019, 23 (2): 298- 301.
doi: 10.1109/LCOMM.2018.2889084 |
42 |
WANG Y, GUI J, YIN Y, et al Automatic modulation classification for MIMO systems via deep learning and zero-forcing equalization. IEEE Trans. on Vehicular Technology, 2020, 69 (5): 5688- 5692.
doi: 10.1109/TVT.2020.2981995 |
43 |
GHASEMZADEH P, BANERJEE S, HEMPEL M, et al A novel deep learning and polar transformation framework for an adaptive automatic modulation classification. IEEE Trans. on Vehicular Technology, 2020, 69 (11): 13243- 13258.
doi: 10.1109/TVT.2020.3022394 |
44 |
KUMAR Y, SHEORAN M, JAJOO G, et al Automatic modulation classification based on constellation density using deep learning. IEEE Communications Letters, 2020, 24 (6): 1275- 1278.
doi: 10.1109/LCOMM.2020.2980840 |
45 | ZHENG S L, QI P H, CHEN S C, et al Fusion methods for CNN-based automatic modulation classification. IEEE Access, 2019, 7: 66496–66504. |
46 |
HERMAWAN A P, GINANJAR R R, KIM D, et al CNN-based automatic modulation classification for beyond 5G communications. IEEE Communications Letters, 2020, 24 (5): 1038- 1041.
doi: 10.1109/LCOMM.2020.2970922 |
47 |
TU Y, LIN Y, HOU C B, et al Complex-valued networks for automatic modulation classification. IEEE Trans. on Vehicular Technology, 2020, 69 (9): 10085- 10089.
doi: 10.1109/TVT.2020.3005707 |
48 |
WANG Y, WANG J, YANG J, et al Deep learning-based cooperative automatic modulation classification method for MIMO systems. IEEE Trans. on Vehicular Technology, 2020, 69 (4): 4575- 4579.
doi: 10.1109/TVT.2020.2976942 |
49 | SHAH M H, DANG X Novel feature selection method using Bhattacharyya distance for neural networks based automatic modulation classification. IEEE Signal Processing Letters, 2020, 27, 106- 110. |
50 | SUN J, XU G L, REN W J, et al Radar emitter classification based on unidimensional convolutional neural network. IET Radar, Sonar & Navigation, 2018, 12 (8): 862- 867. |
51 |
WONG L J, HEADLEY W C, MICHAELS A J Specific emitter identification using convolutional neural network-based IQ imbalance estimators. IEEE Access, 2019, 7, 33544- 33555.
doi: 10.1109/ACCESS.2019.2903444 |
52 |
PAN Y W, YANG S H, PENG H, et al Specific emitter identification based on deep residual networks. IEEE Access, 2019, 7, 54425- 54434.
doi: 10.1109/ACCESS.2019.2913759 |
53 |
DING L D, WANG S L, WANG F G, et al Specific emitter identification via convolutional neural networks. IEEE Communications Letters, 2018, 22 (12): 2591- 2594.
doi: 10.1109/LCOMM.2018.2871465 |
54 |
HE B X, WANG F G Cooperative specific emitter identification via multiple distorted receivers. IEEE Trans. on Information Forensics and Security, 2020, 15, 3791- 3806.
doi: 10.1109/TIFS.2020.3001721 |
55 | BAI J L, GAO L, GAO J P, et al A new radar signal modulation recognition algorithm based on time-frequency transform. Proc. of the IEEE 4th International Conference on Signal and Image Processing, 2019, 21- 25. |
56 |
ZHANG J S, XING M D, XIE Y Y FEC: a feature fusion framework for sar target recognition based on electromagnetic scattering features and deep CNN features. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (3): 2174- 2187.
doi: 10.1109/TGRS.2020.3003264 |
57 |
GAO F, SHI W, WANG J, et al A semi-supervised synthetic aperture radar (SAR) image recognition algorithm based on an attention mechanism and bias-variance decomposition. IEEE Access, 2019, 7, 108617- 108632.
doi: 10.1109/ACCESS.2019.2933459 |
58 |
XIONG G, XI Y L, CHEN D, et al Dual-polarization SAR ship target recognition based on mini hourglass region extraction and dual-channel efficient fusion network. IEEE Access, 2021, 9, 29078- 29089.
doi: 10.1109/ACCESS.2021.3058188 |
59 |
WEN Z D, WU Q, LIU Z G, et al Polar-spatial feature fusion learning with variational generative-discriminative network for PolSAR classification. IEEE Trans. on Geoscience and Remote Sensing, 2019, 57 (11): 8914- 8927.
doi: 10.1109/TGRS.2019.2923738 |
60 | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions. https://arxiv.org/abs/1511.07122. |
61 | WOO S, PARK J, LEE J, et al CBAM: convolutional block attention module. Proc. of the 15th European Conference on Computer Vision, 2018, 3- 19. |
62 | ZHAO S K, NGUYEN T H, MA B Monaural speech enhancement with complex convolutional block attention module and joint time frequency losses. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2021, 6648- 6652. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||