1 |
LI B, FEI Z S, ZHANG Y UAV communications for 5G and beyond: recent advances and future trends. IEEE Internet of Things Journal, 2019, 6 (2): 2241- 2263.
doi: 10.1109/JIOT.2018.2887086
|
2 |
XU J, GUO Q, XIAO L, et al Autonomous decision-making method for combat mission of UAV based on deep reinforcement learning. Proc. of the IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, 2019, 538- 544.
|
3 |
SHAKHATREH H, SAWALMEH A H, FUQAHA A A, et al Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access, 2019, 7, 48572- 48634.
doi: 10.1109/ACCESS.2019.2909530
|
4 |
ZHANG J D, YANG Q M, SHI G Q, et al UAV cooperative air combat maneuver decision based on multi-agent reinforcement learning. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1421- 1438.
doi: 10.23919/JSEE.2021.000121
|
5 |
ZUO J L, YANG R N, ZHANG Y, et al Intelligent decision making in air combat maneuvering based on heuristic reinforcement learning. Acta Aeronautica et Astronautica Sinica, 2017, 38 (10): 217- 230.
|
6 |
HANG C Q, DONG K S, HUANG H Q, et al Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization. Journal of Systems Engineering and Electronics, 2018, 29 (1): 86- 97.
doi: 10.21629/JSEE.2018.01.09
|
7 |
XI Z F, XU A, KOU Y X, et al Decision process of multiaircraft cooperative air combat maneuver. Systems Engineering and Electronics, 2020, 42 (2): 381- 389.
|
8 |
ZHANG J, WANG G, YUE S H et al. Multi-agent system application in accordance with game theory in bi-directional coordination network model. Journal of Systems Engineering and Electronics, 2020, 31 (2): 279- 289.
|
9 |
ZUO J L, ZHANG Y, YANG R N, et al Reconstruction and evaluation of medium-rang cooperation air combat decision making process with two phase clustering. Systems Engineering and Electronics, 2020, 42 (1): 108- 117.
|
10 |
XU H T, HUANG W T, ZHOU Y H, et al Edge computing resource allocation for unmanned aerial vehicle assisted mobile network with blockchain applications. IEEE Trans. on Wireless Communications, 2021, 20 (5): 3107- 3121.
|
11 |
ALSALAM B H Y, MORTON K, CAMPBELL D, et al. Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture. Proc. of the IEEE Aerospace Conference, 2017: 1-12. DOI: 10.1109/AERO.2017.7943593.
|
12 |
YUAN H W, XIAO C S, ZHAN W Q, et al. Target detection, positioning and tracking using new UAV gas sensor systems: simulation and analysis. Journal of Intelligent & Robotic Systems, 2019, 94: 871−882.
|
13 |
YANG Y Z, ZHENG Z J, BIAN K G, et al Real-time profiling of fine-grained air quality index distribution using UAV sensing. IEEE Internet of Things Juurnal, 2018, 5 (1): 186- 198.
doi: 10.1109/JIOT.2017.2777820
|
14 |
CAI Y, YU F R, LI J, et al Medium access control for unmanned aerial vehicle (UAV) ad-hoc networks with full-duplex radios and multi-packet reception capability. IEEE Trans. on Vehicular Technology, 2013, 62 (1): 390- 394.
doi: 10.1109/TVT.2012.2211905
|
15 |
FENG Z Y, JI L, ZHANG Q X, et al Spectrum management for mm-Wave enabled UAV swarm networks: challenges and opportunities. IEEE Communications Magazine, 2019, 57 (1): 146- 153.
doi: 10.1109/MCOM.2018.1800087
|
16 |
TAKAHASHI Y, KAWAMOTO Y, NISHIYAMA H, et al A novel radio resource optimization method for relay-based unmanned aerial vehicles. IEEE Trans. on Wireless Communications, 2018, 17 (11): 7352- 7363.
doi: 10.1109/TWC.2018.2866576
|
17 |
GUPTA L, JAIN R, VASZKUN G Survey of important issues in UAV communication networks. IEEE Communications Surveys & Tutorials, 2016, 18 (2): 1123- 1152.
|
18 |
KAI C H, LI H, XU L, et al Joint subcarrier assignment with power allocation for sum rate maximization of D2D communications in wireless cellular networks. IEEE Trans. on Vehicular Technology, 2019, 68 (5): 4748- 4759.
doi: 10.1109/TVT.2019.2903815
|
19 |
ESMAT H H, EMESALAWY M M, IBRAHIM I I Adaptive resource sharing algorithm for device-to-device communications underlaying cellular networks. IEEE Communications Letters, 2016, 20 (3): 530- 533.
doi: 10.1109/LCOMM.2016.2517012
|
20 |
SHAO J T, ZHENG J J, ZHANG B Deep convolutional neural networks for thyroid tumor grading using ultrasound B-mode images. Journal of the Acoustical Society of America, 2020, 148 (3): 1529- 1535.
doi: 10.1121/10.0001924
|
21 |
ALEJANDRO G A, PEINADO A M, GONZALEZ J A, et al A gated recurrent convolutional neural network for robust spoofing detection. IEEE/ACM Trans. on Audio Speech and Language Processing, 2019, 27 (12): 1985- 1999.
doi: 10.1109/TASLP.2019.2937413
|
22 |
GLATT R, DA SILVA F L, DA COSTA BIANCHI R A, et al Deep case-based policy inference for knowledge transfer in reinforcement learning. Expert Systems with Applications, 2020, 156, 113420.
|
23 |
WANG S X, LIU H P, GOMES P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks. IEEE Trans. on Conitive Communications and Networking, 2018, 4(2): 257−265.
|
24 |
XU Y, ZHANG T K, YANG D C, et al Joint resource and trajectory optimization for security in UAV-assisted MEC systems. IEEE Trans. on Wireless Communications, 2021, 69 (1): 573- 588.
doi: 10.1109/TCOMM.2020.3025910
|
25 |
YANG G, DAI R, LIANG Y C Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization. IEEE Trans. on Wireless Communications, 2021, 20 (2): 926- 941.
doi: 10.1109/TWC.2020.3029225
|
26 |
SUN Y, XU D F, NG D W K, et al Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems. IEEE Trans. on Communications, 2019, 67 (6): 4281- 4298.
|
27 |
WANG Y, LI I D, CHEN Y B, et al Joint resource allocation and UAV trajectory optimization for space-air-ground internet of remote things networks. IEEE Systems Journal, 2021, 15 (4): 4745- 4755.
doi: 10.1109/JSYST.2020.3019463
|
28 |
ZHANG S H, ZHANG H L, DI B, et al Cellular UAV-to-X communications: design and optimization for multi-UAV networks. IEEE Trans. on Wireless Communications, 2019, 18 (2): 1346- 1359.
doi: 10.1109/TWC.2019.2892131
|
29 |
ZHU Q M, CHEN X M, YANG Z Q, et al Experimental teaching of wireless channel fading emulation based on FPGAs. Journal of Electrical and Electronic Education, 2019, 41 (6): 138- 141.
|
30 |
RICE M, DAVIS A, BETTWEISER C Wideband channel model for aeronautical telemetry. IEEE Trans. on Aerospace and Electronic Systems, 2004, 40 (1): 57- 69.
doi: 10.1109/TAES.2004.1292142
|
31 |
MNIH V, KAVUKCUOGLU K, SILVER D, et al Human level control through deep reinforcement learning. Nature, 2015, 518 (7540): 529- 533.
doi: 10.1038/nature14236
|
32 |
LIN L J Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 1992, 8 (3): 293- 321.
|
33 |
TR 36.777. Enhanced LTE support for aerial vehicles release 15. https://www.3gpp.org/ftp/Specs/archive/36_series/36.777/.
|