1 |
VEETTIL S V, AQUINO M Statistical models to provide meaningful information to GNSS users in the presence of ionospheric scintillation. GPS Solutions, 2021, 25 (2): 54- 66.
doi: 10.1007/s10291-020-01083-x
|
2 |
ISSA H, STIENNE G, REBOUL S, et al A probabilistic model for on-line estimation of the GNSS carrier-to-noise ratio. Signal Processing, 2021, 183 (4): 107992.
|
3 |
LI Y, ZOU X H, LIU P Y, et al Four-element array for GNSS attitude determination using IRLS: an improved rounding of long-short baseline approach. IEEE Trans. on Vehicular Technology, 2020, 69 (5): 4920- 4934.
doi: 10.1109/TVT.2020.2978862
|
4 |
SUN Y Optimal parameter design of continuous phase modulation for future GNSS signals. IEEE Access, 2021, 99, 58487- 58502.
|
5 |
WANG C H, CUI X W, ZHU Y H, et al Thermal noise performance analysis for dual binary phase-shift keying tracking of standard BOC signals. IET Radar, Sonar & Navigation, 2020, 14, 1019- 1028.
|
6 |
AIKAWA Y Integrated optical digital-to-analogue converter for a 2-bit BPSK-modulated signal based on a silicon photonics waveguide. Electronics Letters, 2020, 56 (16): 830- 832.
doi: 10.1049/el.2020.0950
|
7 |
ZHAO H W, ZHANG Z C, LUO X Z, et al Quality monitoring and biases estimation of BOC navigation signals. Journal of Systems Engineering and Electronics, 2019, 30 (3): 474- 484.
doi: 10.21629/JSEE.2019.03.05
|
8 |
YOON S, CHAE K, SUN Y K A new approach to local signal design for enhanced TMBOC signal tracking. Journal of Electrical Engineering and Technology, 2020, 15 (4): 1837- 1845.
doi: 10.1007/s42835-020-00451-4
|
9 |
JULIEN O, MACABIAU C, CANNON E, et al ASPeCT: unambiguous sine-BOC(n, n) acquisition/tracking technique for navigation applications. IEEE Trans. on Aerospace and Electronic Systems, 2007, 43 (1): 150- 162.
doi: 10.1109/TAES.2007.357123
|
10 |
LOHAN E S Statistical analysis of BPSK-like techniques for the acquisition of Galileo signals. Journal of Aerospace Computing, Information, and Communication, 2006, 3 (5): 234- 243.
doi: 10.2514/1.17441
|
11 |
YAO Z, CUI X W, LU M Q, et al Pseudo- correlation-function-based unambiguous tracking technique for sine-BOC signals. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (4): 1782- 1796.
doi: 10.1109/TAES.2010.5595594
|
12 |
SPANGENBERG S M, SCOTT I, MCLAUGHLIN S, et al An FFT-based approach for fast acquisition in spread spectrum communication systems. Wireless Personal Communications, 2000, 13 (1/2): 27- 55.
|
13 |
PAN Y, ZHANG T Q, ZHANG G, et al A novel acquisition algorithm based on PMF-apFFT for BOC modulated signals. IEEE Access, 2019, 7, 46686- 46694.
doi: 10.1109/ACCESS.2019.2909787
|
14 |
YAN K, ZIEDAN N I, ZHANG H, et al Weak GPS signal tracking using FFT discriminator in open loop receiver. GPS Solution, 2016, 20 (2): 225- 237.
doi: 10.1007/s10291-014-0431-3
|
15 |
FAN B, ZHANG K, QIN Y L, et al Discrete chirp-Fourier transform-based acquisition algorithm for weak global positioning system l5 signals in high dynamic environments. IET Radar, Sonar and Navigation, 2013, 7 (7): 736- 746.
doi: 10.1049/iet-rsn.2012.0249
|
16 |
WON J H, PANY T, EISSFELLER B Iterative maximum likelihood estimators for high-dynamic GNSS signal tracking. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (4): 2875- 2893.
doi: 10.1109/TAES.2012.6324667
|
17 |
XIA X, ZHAO J K, LONG H H, et al Fractional Fourier transform-based unassisted tracking method for global navigation satellite system signal carrier with high dynamics. IET Radar, Sonar and Navigation, 2016, 10 (3): 506- 515.
doi: 10.1049/iet-rsn.2015.0219
|
18 |
LUO Y R, ZHANG L, SHEIMY N An improved DE-KFL for BOC signal tracking assisted by FRFT in a highly dynamic environment. Proc. of the IEEE Position, Location and Navigation Symposium, 2018, 1525- 1534.
|
19 |
OZAKTAS H M, ARIKAN O, KUTAY M A, et al Digital computation of the fractional fourier transform. IEEE Trans. on Signal Processing, 1996, 44 (9): 2141- 2150.
doi: 10.1109/78.536672
|
20 |
WEI D Y, ZHANG Y J Fractional Stockwell transform: theory and applications. Digital Signal Processing, 2021, 115, 103090.
doi: 10.1016/j.dsp.2021.103090
|
21 |
CHEN Y L, GUO L H, GONG Z X The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency-modulated signal. Acta Acustica, 2015, 40 (6): 761- 771.
|
22 |
ZHANG X P, LIAO G S, ZHU S Q, et al Efficient compressed sensing method for moving targets imaging by exploiting the geometry information of the defocused results. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (3): 517- 521.
doi: 10.1109/LGRS.2014.2349035
|
23 |
ZHANG K, ZHAO S H, LIN T, et al Frequency- multiplying dual-chirp microwave waveform generation based on a dual-drive DP-MZM. Space Electronic Technology, 2020, 4, 109- 116.
|
24 |
HAO G C, GUO J, BAI Y X, et al Novel method for non-stationary signals via high-concentration time-frequency analysis using SSTFrFT. Circuits Systems and Signal Processing, 2020, 39, 5710- 5728.
|
25 |
GAO L, QI L, GUAN L The property of frequency shift in 2D-FRFT domain with application to image encryption. IEEE Signal Processing Letters, 2021, (28): 185- 189.
|
26 |
GUO Z, LU M F, WU J M, et al Fast FRFT-based method for estimating physical parameters from Newton ’s rings. Applied Optics, 2019, 58 (14): 3926- 3931.
doi: 10.1364/AO.58.003926
|
27 |
PEI S C, DING J J Relations between Gabor transforms and fractional fourier transforms and their applications for signal processing. IEEE Trans. on Signal Processing, 2007, 55 (10): 4839- 4850.
doi: 10.1109/TSP.2007.896271
|
28 |
LUO Y R, ZHANG L, RUAN H An acquisition algorithm based on FRFT for weak GNSS signals in a dynamic environment. IEEE Communication Letters, 2018, 22 (6): 1212- 1215.
doi: 10.1109/LCOMM.2018.2828834
|
29 |
VANNEE D J R, COENEN A New fast GPS code-acquisition technique using FFT. Electronics Letters, 1991, 27 (2): 158- 160.
doi: 10.1049/el:19910102
|
30 |
KONG S H A deterministic compressed GNSS acquisition technique. IEEE Trans. on Vehicular Technology, 2013, 62 (2): 511- 521.
doi: 10.1109/TVT.2012.2220989
|