Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (6): 1269-1285.doi: 10.23919/JSEE.2022.000147
• • 上一篇
收稿日期:
2021-10-28
出版日期:
2022-12-18
发布日期:
2022-12-24
Yang XU1,2(), Weiming ZHENG3(), Delin LUO3,*(), Haibin DUAN4()
Received:
2021-10-28
Online:
2022-12-18
Published:
2022-12-24
Contact:
Delin LUO
E-mail:yang.xu@nwpu.edu.cn;zwming@stu.xmu.edu.cn;luodelin1204@xmu.edu.cn;hbduan@buaa.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1269-1285.
Yang XU, Weiming ZHENG, Delin LUO, Haibin DUAN. Dynamic affine formation control of networked under-actuated quad-rotor UAVs with three-dimensional patterns[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1269-1285.
"
Symbol | Description |
| The |
| Undirected graph |
| Stress matrix |
| Inertia frame, body frame |
| Mass, gravitational acceleration, inertial matrix |
| Position, linear velocity |
| Unit quaternion, angular velocity |
| Rotation matrix |
| Thrust input, torque input |
| Target configuration, desired reference linear velocity |
| Linear velocity tracking error |
| Intermediary control input |
| Auxiliary variables |
| Auxiliary error variables |
| Auxiliary control input |
| Desired attitude, attitude tracking error |
| Desired angular velocity, angular velocity tracking error |
| Positive scalar gains |
| Positive scalar gains |
| Positive scalar gains |
1 |
HUA M D, HAMEL T, MORIN P, et al Introduction to feedback control of underactuated VTOL vehicles: a review of basic control design ideas and principles. IEEE Control Systems Magazine, 2013, 33 (1): 61- 75.
doi: 10.1109/MCS.2012.2225931 |
2 |
XU Y, LUO D L, YOU Y C, et al New advances in multiple autonomous aerial robots formation control technology. Science China Technological Sciences, 2019, 62 (10): 1871- 1872.
doi: 10.1007/s11431-018-9457-9 |
3 |
LUO D L, SHAO J, XU Y, et al Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search. Applied Sciences, 2019, 9 (5): 827.
doi: 10.3390/app9050827 |
4 |
QIU H X, DUAN H B A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Information Sciences, 2020, 509, 515- 529.
doi: 10.1016/j.ins.2018.06.061 |
5 |
ZULU A, JOHN S A review of control algorithms for autonomous quadrotors. Open Journal of Applied Sciences, 2014, 4 (14): 547- 556.
doi: 10.4236/ojapps.2014.414053 |
6 |
YU Y S, DING X L A global tracking controller for underactuated aerial vehicles: design, analysis, and experimental tests on quadrotor. IEEE/ASME Trans. on Mechatronics, 2016, 21 (5): 2499- 2511.
doi: 10.1109/TMECH.2016.2558678 |
7 | KANG B, MIAO Y, LIU F, et al A second-order sliding mode controller of quad-rotor UAV based on PID sliding mode surface with unbalanced load. Journal of Systems Science and Complexity, 2020, 34 (1): 520- 536. |
8 |
DONG X W, YU B, SHI Z Y, et al Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. on Control Systems Technology, 2015, 23 (1): 340- 348.
doi: 10.1109/TCST.2014.2314460 |
9 | DONG X W, ZHOU Y, REN Z, et al Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. on Industrial Electronics, 2016, 64 (6): 5014- 5024. |
10 |
DONG X W, ZHOU Y, REN Z, et al Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control Engineering Practice, 2016, 46, 26- 36.
doi: 10.1016/j.conengprac.2015.10.001 |
11 |
ZHANG W, DONG C Y, RAN M P, et al Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer. Chinese Journal of Aeronautics, 2020, 33 (11): 2907- 2920.
doi: 10.1016/j.cja.2020.03.004 |
12 | OH K K, PARK H, AHN H S A survey of multi-agent formation control. Automatica, 2015, 53, 429- 448. |
13 | HAN Z M, LIN Z Y, FU M Y, et al Distributed coordination in multi-agent systems: a graph Laplacian perspective. Frontiers of Information Technology & Electronic Engineering, 2015, 16 (6): 429- 448. |
14 |
ZHU B, XIE L H, HAN D, et al A survey on recent progress in control of swarm systems. Science China Information Sciences, 2017, 60 (7): 070201.
doi: 10.1007/s11432-016-9088-2 |
15 | XU Y, LAI S P, LI J X, et al Concurrent optimal trajectory planning for indoor quadrotor formation switching. Journal of Intelligent & Robotic Systems, 2019, 94 (2): 503- 520. |
16 |
WANG J R, LUO X Y, LI X L Sliding mode formation control of nonlinear multi-agent systems with local Lipschitz continuous dynamics. Journal of Systems Science and Complexity, 2019, 32 (6): 759- 777.
doi: 10.1007/s11424-018-7299-1 |
17 |
HU J L, SUN X X, HE L Formation tracking for nonlinear multi-agent systems with input and output quantization via adaptive output feedback control. Journal of Systems Science and Complexity, 2020, 33 (2): 401- 425.
doi: 10.1007/s11424-019-8087-2 |
18 | SUN Z Y, MOU S S, DEGHAT M, et al Finite time distributed distance-constrained shape stabilization and flocking control for d-dimensional undirected rigid formations . International Journal of Robust and Nonlinear Control, 2019, 26 (13): 2824- 2844. |
19 |
ZHAO S Y, ZELAZO D Translational and scaling formation maneuver control via a bearing-based approach. IEEE Trans. on Control of Network Systems, 2017, 4 (3): 429- 438.
doi: 10.1109/TCNS.2015.2507547 |
20 |
HAN Z M, WANG L L, LIN Z Y, et al Formation control with size scaling via a complex Laplacian-based approach. IEEE Trans. on Cybernetics, 2016, 46 (10): 2348- 2359.
doi: 10.1109/TCYB.2015.2477107 |
21 |
HAN Z M, GUO K X, XIE L H, et al Integrated relative localization and leader-follower formation control. IEEE Trans. on Automatic Control, 2019, 64 (1): 20- 34.
doi: 10.1109/TAC.2018.2800790 |
22 | RANJBAR M, BEHESHTI M T, BOLOUKI S Event-based formation control of networked multiagent systems using complex Laplacian under directed topology. IEEE Control Systems Letters, 2020, 5 (3): 1085- 1090. |
23 |
ZHAO S Y Affine formation maneuver control of multiagent systems. IEEE Trans. on Automatic Control, 2018, 63 (12): 4140- 4155.
doi: 10.1109/TAC.2018.2798805 |
24 |
XU Y, LI D Y, LUO D L, et al Two-layer distributed hybrid affine formation control of networked Euler-Lagrange systems. Journal of the Franklin Institute, 2019, 356 (4): 2172- 2197.
doi: 10.1016/j.jfranklin.2018.11.029 |
25 |
XU Y, LUO D L, LI D Y, et al Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance. Chinese Journal of Aeronautics, 2019, 32 (12): 2679- 2693.
doi: 10.1016/j.cja.2019.04.016 |
26 | XU Y, ZHAO S Y, LUO D L, et al Affine formation maneuver control of high-order multi-agent systems over directed networks. Automatica, 2020, 118, 198994. |
27 | XU Y, LIN Z Y, ZHAO S Y Distributed affine formation tracking control of multiple fixed-wing UAVs. Proc. of the 39th Chinese Control Conference, 2020, 4712- 4717. |
28 | LI D Y, MA G F, XU Y, et al. Layered affine formation control of networked uncertain systems: a fully distributed approach over directed graphs. IEEE Trans. on Cybernetics, 2021, 51(12): 6119−6130. |
29 |
LI D Y, CAO K, KONG L H, et al Fully distributed cooperative circumnavigation of networked unmanned aerial vehicles. IEEE/ASME Trans. on Mechatronics, 2021, 26 (2): 709- 718.
doi: 10.1109/TMECH.2021.3055654 |
30 | LIN Y J, LIN Z Y, SUN Z Y, et al. A unified approach for finite-time global stabilization of affine, rigid and translational formation. IEEE Trans. on Automatic Control, 2021, 67(4): 1869−1881. |
31 |
YANG J Y, XIAO F, CHEN T W Formation tracking of nonholonomic systems on the special Euclidean group under fixed and switching topologies: an affine formation strategy. SIAM Journal on Control and Optimization, 2021, 59 (4): 2850- 2874.
doi: 10.1137/20M1328130 |
32 | BENZEMRANE K, SANTOSUOSSO G L, DAMM G Unmanned aerial vehicle speed estimation via nonlinear adaptive observers. Proc. of the American Control Conference, 2007, 985- 990. |
33 | ABDESSAMEUD A, POLUSHIN I G, TAYEBI A Motion coordination of thrust-propelled underactuated vehicles with intermittent and delayed communications. Systems & Control Letters, 2015, 79, 15- 22. |
34 |
ZOU Y, MENG Z Y Distributed hierarchical control for multiple vertical takeoff and landing UAVs with a distance-based network topology. International Journal of Robust and Nonlinear Control, 2019, 29 (9): 2573- 2588.
doi: 10.1002/rnc.4513 |
35 | ZHAO W, LIU H, LEWIS F L Robust formation control for cooperative underactuated quadrotors via reinforcement learning. IEEE Trans. on Neural Networks and Learning Systems, 2020, 32 (10): 302371. |
36 |
ZOU Y Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors. International Journal of Robust and Nonlinear Control, 2017, 27 (6): 925- 941.
doi: 10.1002/rnc.3607 |
37 | ROBERTS A, TAYEBI A Adaptive position tracking of VTOL UAVs. IEEE Trans. on Robotics, 2010, 27 (1): 129- 142. |
38 |
ZHU B, HUO W Nonlinear control for a model-scaled helicopter with constraints on rotor thrust and fuselage attitude. Acta Automatica Sinica, 2014, 40 (11): 2654- 2664.
doi: 10.1016/S1874-1029(14)60411-0 |
39 | SLOTINE J J, LI W P. Applied nonlinear control. Englewood Cliffs: Prentice Hall, 1991. |
40 |
CONG Y Z, DU H B, JIN Q C, et al Formation control for multiquadrotor aircraft: connectivity preserving and collision avoidance. International Journal of Robust and Nonlinear Control, 2020, 30 (6): 2352- 2366.
doi: 10.1002/rnc.4886 |
41 |
HU J W, WANG M, ZHAO C H, et al Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. Science China Technological Sciences, 2020, 63 (1): 65- 72.
doi: 10.1007/s11431-018-9449-9 |
42 |
HUANG Y F, LIU W, LI B, et al Finite-time formation tracking control with collision avoidance for quadrotor UAVs. Journal of the Franklin Institute, 2020, 357 (7): 4034- 4058.
doi: 10.1016/j.jfranklin.2020.01.014 |
43 |
SHANG W, JIN G H, ZHANG D D, et al Adaptive fixed time nonsingular terminal sliding-mode control for quadrotor formation with obstacle and inter-quadrotor avoidance. IEEE Access, 2021, 9, 60640- 60657.
doi: 10.1109/ACCESS.2021.3074316 |
44 | ENDO M, IBUKI T, SAMPEI M Collision-free formation control for quadrotor networks based on distributed quadratic programs. Proc. of the American Control Conference, 2019, 3335- 3340. |
45 | GHOMMAM J, LUQUE-VEGA L F, SAAD M Distance-based formation control for quadrotors with collision avoidance via Lyapunov barrier functions. International Journal of Aerospace Engineering, 2020, 2020, 2069631. |
46 |
ZHAO E J, ZHONG Z N, ZHENG X Finite-time control of formation system for multiple flight vehicles subject to actuator saturation. Journal of Systems Engineering and Electronics, 2020, 31 (5): 1019- 1030.
doi: 10.23919/JSEE.2020.000076 |
47 |
QI D, HU J H, LIANG X L, et al Research on consensus of multi-agent systems with and without input saturation constraints. Journal of Systems Engineering and Electronics, 2021, 32 (4): 947- 955.
doi: 10.23919/JSEE.2021.000081 |
48 |
DING STEVEN X C, LI L L, JIANG B Unified control and detection framework and its applications: a review, some new results, and future perspective. Journal of Systems Engineering and Electronics, 2021, 32 (5): 995- 1013.
doi: 10.23919/JSEE.2021.000085 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||