Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (6): 1208-1223.doi: 10.23919/JSEE.2022.000143
• • 上一篇
收稿日期:
2020-04-07
出版日期:
2022-12-18
发布日期:
2022-12-24
Hui CHE1,2(), Dingxiang PENG2(), Fachang GUO2(), Yong BAI3,*()
Received:
2020-04-07
Online:
2022-12-18
Published:
2022-12-24
Contact:
Yong BAI
E-mail:xmutch@163.com;pengdx@ruijie.com.cn;guofachang@ruijie.com.cn;bai@hainanu.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1208-1223.
Hui CHE, Dingxiang PENG, Fachang GUO, Yong BAI. Faster-than-Nyquist signaling based on filter bank multicarrier modulation with joint optimization[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1208-1223.
"
Parameter | Value |
Prototype filter | RRC, |
Number of subcarriers | |
Packing ratio pair | ( |
Constellation cardinality | M=4 |
Doping rate | |
Code rate | r=0.5 |
Code length | 32000 |
Degree distribution | |
ISI taps | |
Spectrum efficiency | |
Minimal | 2.5 dB |
| 30 |
Dimension of | 8 |
Maximum iterations | |
1 |
CHE H, ZHU K, BAI Y Multicarrier faster-than-Nyquist based on efficient implementation and probabilistic shaping. IEEE Access, 2021, 9, 63943- 63951.
doi: 10.1109/ACCESS.2021.3075575 |
2 |
LIU S, ZHANG X, YANG F G, et al Fast and accurate covariance matrix reconstruction for adaptive beamforming using Gauss-Legendre quadrature. Journal of Systems Engineering and Electronics, 2021, 32 (1): 38- 43.
doi: 10.23919/JSEE.2021.000005 |
3 | RUSEK F, ANDERSON J B The two dimensional Mazo limit. Proc. of the International Symposium on Information Theory, 2005, 970- 974. |
4 |
RUSEK F, ANDERSON J B Multistream faster than Nyquist signaling. IEEE Trans. on Communications, 2009, 57 (5): 1329- 1340.
doi: 10.1109/TCOMM.2009.05.070224 |
5 |
RUSEK F, ANDERSON J B Constrained capacities for faster-than-Nyquist signaling. IEEE Trans. on Information Theory, 2009, 55 (2): 764- 775.
doi: 10.1109/TIT.2008.2009832 |
6 | HEFNAWY M E, KRAMER G Impact of spectrum sharing on the efficiency of faster-than-Nyquist signaling. Proc. of the IEEE Wireless Communications and Networking Conference, 2014, 648- 653. |
7 | RAINNIE D, FENG Y, BAJCSY J On capacity merits of spectrally efficient FDM. Proc. of the IEEE Military Communications Conference, 2015, 581- 586. |
8 |
TELATAR E Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 1999, 10 (6): 585- 595.
doi: 10.1002/ett.4460100604 |
9 | GRAY R M Toeplitz and circulant matrices: a review. Foundations and Trends in Communications and Information Theory, 2006, 2 (3): 155- 239. |
10 |
MATZ G, SCHAFHUBER D, GROCHENIG K, et al Analysis, optimization, and implementation of low-interference wireless multicarrier systems. IEEE Trans. on Wireless Communications, 2007, 6 (5): 1921- 1931.
doi: 10.1109/TWC.2007.360393 |
11 | MATZ G, SCHAFHUBER D, GROCHENIG K, et al. Discrete-time signal processing. Englewood Cliffs: Prentice-Hall, 1999. |
12 | DASALUKUNTE D, RUSEK F, OWALL V Multicarrier faster-than-Nyquist transceivers: hardware architecture and performance analysis. IEEE Trans. on Circuits and Systems I:Regular Papers, 2010, 58 (4): 827- 838. |
13 | WANG K, LIU A J, LIANG X H, et al A faster-than-Nyquist (FTN)-based multicarrier system. IEEE Trans. on Vehicular Technology, 2018, 68 (1): 947- 951. |
14 |
PENG S M, LIU A J, PAN X F, et al Hexagonal multicarrier faster-than-Nyquist signaling. IEEE Access, 2017, 5, 3332- 3339.
doi: 10.1109/ACCESS.2017.2674666 |
15 | PENG S M, LIU A J, TONG X H, et al An efficient implementation of lattice staggered multicarrier faster-than-Nyquist signaling. IEEE Communications Letters, 2017, 22 (2): 240- 243. |
16 |
BARBIERI A, FERTONANI D, COLAVOLPE G Time-frequency packing for linear modulations: spectral efficiency and practical detection schemes. IEEE Trans. on Communications, 2009, 57 (10): 2951- 2959.
doi: 10.1109/TCOMM.2009.10.080200 |
17 |
COLAVOLPE G, FOGGI T Time-frequency packing for high-capacity coherent optical links. IEEE Trans. on Communications, 2014, 62 (8): 2986- 2995.
doi: 10.1109/TCOMM.2014.2339321 |
18 |
SECONDINI M, FOGGI T, FRESI F, et al Optical time–frequency packing: principles, design, implementation, and experimental demonstration. Journal of Lightwave Technology, 2015, 33 (17): 3558- 3570.
doi: 10.1109/JLT.2015.2443876 |
19 | PENG S M, LIU A J, TONG X H, et al On max-SIR time–frequency packing for multicarrier faster-than-Nyquist signaling. IEEE Communications Letters, 2017, 21 (10): 2142- 2145. |
20 | RUSEK F, PRLJA A Optimal channel shortening for MIMO and ISI channels. IEEE Trans. on Wireless Communications, 2011, 11 (2): 810- 818. |
21 |
CHE H, BAI Y Coded modulation faster-than-Nyquist transmission with precoder and channel shortening optimization. China Communications, 2021, 18 (2): 49- 64.
doi: 10.23919/JCC.2021.02.005 |
22 |
PIEMONTESE A, MODENINI A, COLAVOLPE G, et al Improving the spectral efficiency of nonlinear satellite systems through time-frequency packing and advanced receiver processing. IEEE Trans. on Communications, 2013, 61 (8): 3404- 3412.
doi: 10.1109/TCOMM.2013.070213.130064 |
23 | BOCHAROVA I E, KUDRYASHOV B D, JOHANNESSON R Searching for binary and nonbinary block and convolutional LDPC codes. IEEE Trans. on Information Theory, 2015, 62 (1): 163- 183. |
24 | YU J, PARK J, RUSEK F, et al High order modulation in faster-than-Nyquist signaling communication systems. Proc. of the IEEE 80th Vehicular Technology Conference, 2014, 1- 5. |
25 | ZHANG Y D, WANG S H, JI G L A comprehensive survey on particle swarm optimization algorithm and its applications. Mathematical Problems in Engineering, 2015, 2015, 1- 38. |
26 |
LI H Z, WANG Y Particle swarm optimization for rigid body reconstruction after micro-Doppler removal in radar analysis. Journal of Systems Engineering and Electronics, 2020, 31 (3): 488- 499.
doi: 10.23919/JSEE.2020.000023 |
27 |
FRANCESCHINI M, FERRARI G, RAHELI R, et al Serial concatenation of LDPC codes and differential modulations. IEEE Journal on Selected Areas in Communications, 2005, 23 (9): 1758- 1768.
doi: 10.1109/JSAC.2005.853797 |
28 | KENNEDY J Bare bones particle swarms. Proc. of the IEEE Swarm Intelligence Symposium, 2003, 80- 87. |
29 | BLACKWELL T A study of collapse in bare bones particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2011, 16 (3): 354- 372. |
30 | PFLETSCHINGER S, SANZI F Error floor removal for bit-interleaved coded modulation with iterative detection. IEEE Trans. on Wireless Communications, 2006, 5 (11): 3174- 3181. |
31 | CHE H Faster-than-Nyquist signaling based on filter bank multicarrier modulation. Proc. of the IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2019, 1- 6. |
32 |
FARHANG-BOROUJENY B OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine, 2011, 28 (3): 92- 112.
doi: 10.1109/MSP.2011.940267 |
33 |
NISSEL R, SCHWARZ S, RUPP M Filter bank multicarrier modulation schemes for future mobile communications. IEEE Journal on Selected Areas in Communications, 2017, 35 (8): 1768- 1782.
doi: 10.1109/JSAC.2017.2710022 |
34 |
MODENINI A, RUSEK F, COLAVOLPE G Optimal transmit filters for ISI channels under channel shortening detection. IEEE Trans. on Communications, 2013, 61 (12): 4997- 5005.
doi: 10.1109/TCOMM.2013.110813.130385 |
35 |
UNGERBOECK G Adaptive maximum-likelihood receiver for carrier-modulated data-transmission systems. IEEE Trans. on Communications, 1974, 22 (5): 624- 636.
doi: 10.1109/TCOM.1974.1092267 |
36 | ZHU Z, WAKIN M B On the asymptotic equivalence of circulant and Toeplitz matrices. IEEE Trans. on Information Theory, 2017, 63 (5): 2975- 2992. |
37 |
BAILEY D H, SWARZTRAUBER P N The fractional Fourier transform and applications. SIAM Review, 1991, 33 (3): 389- 404.
doi: 10.1137/1033097 |
38 |
TUCHLER M, SINGER A C, KOETTER R Minimum mean squared error equalization using a priori information. IEEE Trans. on Signal Processing, 2002, 50 (3): 673- 683.
doi: 10.1109/78.984761 |
39 |
ARNOLD D M, LOELIGER H A, VONTOBEL P O, et al Simulation-based computation of information rates for channels with memory. IEEE Trans. on Information Theory, 2006, 52 (8): 3498- 3508.
doi: 10.1109/TIT.2006.878110 |
40 |
RUSEK F, FERTONANI D Bounds on the information rate of intersymbol interference channels based on mismatched receivers. IEEE Trans. on Information Theory, 2012, 58 (3): 1470- 1482.
doi: 10.1109/TIT.2011.2173707 |
41 | EL-HAJJAR M, HANZO L EXIT charts for system design and analysis. IEEE Communications Surveys & Tutorials, 2013, 16 (1): 127- 153. |
42 | KENNEDY J, MENDES R Population structure and particle swarm performance. Proc. of the Congress on Evolutionary Computation, 2002, 2, 1671- 1676. |
43 | CHE H, WU Z J, KANG W M Inner code optimization for high rate faster-than-Nyquist. Proc. of the IEEE Wireless Communications and Networking Conference, 2019, 1- 6. |
44 | ETSI EN 302 307-2. Digital video broadcasting (DVB);Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications; Part 2: DVB-S2 extensions (DVB-S2X). Sophia Antipolis, Cedex, France: European Broadcasting Union, 2020. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||