1 |
KIRUBARAIAN T, BAR-SHALOM Y, PATTIPATI K, et al Ground target tracking with variable structure IMM estimator. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 (1): 26- 46.
doi: 10.1109/7.826310
|
2 |
ZHAO J, ZHOU R, JIN X L Progress in reentry trajectory planning for hypersonic vehicle. Journal of Systems Engineering and Electronics, 2014, 25 (4): 101- 113.
|
3 |
SIMON D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. New York: John Wiley & Sons, 2006.
|
4 |
BAR-SHALOM Y, LI X R, KIRUBARAIAN T. Estimation with applications to tracking and navigation: theory, algorithms, and software. New York: Wiley, 2001.
|
5 |
ZHANG, Z B, JI H B, YANG J Autonomous optical navigation of Mars probe aided by one-way Doppler measurements in capture stage. Journal of Systems Engineering and Electronics, 2020, 31 (3): 160- 169.
|
6 |
LI X R, JILKOV V P Survey of maneuvering target tracking. Part I: dynamic models. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (4): 1333- 1364.
doi: 10.1109/TAES.2003.1261132
|
7 |
LI X R, JILKOV V P Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (4): 1255- 1321.
doi: 10.1109/TAES.2005.1561886
|
8 |
LI X R, JILKOV V P A survey of maneuvering target tracking. Part IV: decision-based methods. Proc. of SPIE- the International Society for Optical Engineering, 2002, 511- 534.
|
9 |
HARTIKAINEN J, SOLIN A, SARKKA S. Optimal filtering with Kalman filters and smoothers: a manual for the Matlab toolbox EKF/UKF. https://www.researchgate.net/publication/228683456.
|
10 |
LI X R Multiple-model estimation with variable structure. Part II: model-set adaptation. IEEE Trans. on Automatic Control, 2000, 45 (11): 2047- 2060.
|
11 |
LI X R, ZHAO Z L, LI X B General model-set design methods for multiple-model approach. IEEE Trans. on Automatic Control, 2005, 50 (9): 1260- 1276.
doi: 10.1109/TAC.2005.854581
|
12 |
LI X R, BAR-SHALOM Y Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Trans. on Control Systems Technology, 1993, 1 (3): 186- 194.
doi: 10.1109/87.251886
|
13 |
ZDZISLAW K, MIROSLAW S Soft- and hard-decision multiple-model estimators for air traffic control. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (4): 2056- 2065.
doi: 10.1109/TAES.2010.5595615
|
14 |
SINGER R A Estimating optimal tracking filter performance for manned maneuvering targets. IEEE Trans. on Aerospace and Electronic Systems, 1970, 6 (4): 473- 483.
|
15 |
ZHOU H, KUMAR K S P A current statistical model and adaptive algorithm for estimating maneuvering targets. Journal of Guidance, Control, and Dynamics, 1984, 7 (5): 596- 602.
doi: 10.2514/3.19900
|
16 |
QIAN X D, WANG B S. A motion model for tracking highly maneuvering targets. Proc. of the IEEE Radar Conference, 2002. DOI: 10.1109/NRC.2002.999767.
|
17 |
SONG D, THARMARASA R, ZHOU G J, et al Multi-vehicle tracking using microscopic traffic models. IEEE Trans. on Intelligent Transportation Systems, 2019, 20 (1): 149- 161.
doi: 10.1109/TITS.2018.2804894
|
18 |
JO K, LEE M, KIM J, et al Tracking and behavior reasoning of moving vehicles based on roadway geometry constraints. IEEE Trans. on Intelligent Transportation Systems, 2017, 18 (2): 460- 476.
doi: 10.1109/TITS.2016.2605163
|
19 |
JO K, LEE M, SUNWOO M Track fusion and behavioral reasoning for moving vehicles based on curvilinear coordinates of roadway geometries. IEEE Trans. on Intelligent Transportation Systems, 2018, 19 (9): 3068- 3074.
doi: 10.1109/TITS.2017.2759904
|
20 |
YANG C, BAKICH M, BLASCH E Nonlinear constrained tracking of targets on roads. Proc. of the 8th International Conference on Information Fusion, 2005, 235- 242.
|
21 |
CHEN Y S, JILKOV V, LI X R Multilane-road target tracking using radar and image sensors. IEEE Trans. on Aerospace and Electronic Systems, 2015, 51 (1): 65- 80.
doi: 10.1109/TAES.2014.120766
|
22 |
ULMKE M Improved GMTI-tracking using road-maps and topographic information. Proc. of SPIE-the International Society for Optical Engineering, 2003, 143- 154.
|
23 |
ULMKE M, KOCH W Road-map assisted ground moving target tracking. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42 (4): 1264- 1274.
doi: 10.1109/TAES.2006.314571
|
24 |
MERTENS M, ULMKE M Precision GMTI tracking using road constraints with visibility information and a refined sensor model. Proc. of the IEEE Radar Conference, 2008, 1- 6.
|
25 |
KOCH W, KOLLER J, ULMKE M Ground target tracking and road map extraction. Journal of Photogrammetry and Remote Sensing, 2006, 61 (3): 197- 208.
|
26 |
SONG D, THARMARASA R, KIRUBARAIAN T, et al Multi-vehicle tracking with road maps and car-following models. IEEE Trans. on Intelligent Transportation Systems, 2018, 19 (5): 1375- 1386.
doi: 10.1109/TITS.2017.2723575
|
27 |
TIAN Z, LI Y G, CEN M, et al Multi-vehicle tracking using an environment interaction potential force model. IEEE Sensors Journal, 2020, 20 (20): 12282- 12294.
doi: 10.1109/JSEN.2020.2999095
|
28 |
HASBERG C, HENSEL S, STILLER C Simultaneous localization and mapping for path-constrained motion. IEEE Trans. on Intelligent Transportation Systems, 2012, 13 (2): 541- 552.
doi: 10.1109/TITS.2011.2177522
|
29 |
WANG H L, KEARNEY J, ATKINSON K Arc-length parameterized spline curves for real-time simulation. Proc. of the 5th Conference Curve and Surface Design, 2002, 387- 396.
|
30 |
LI T C, CHEN H M, SUN S D, et al. Joint smoothing, tracking, and forecasting based on continuous-time target trajectory fitting. IEEE Trans.on Automation Science and Engineering, 2017, 16(3): 1476−1483.
|
31 |
LI K Y, KIRUBARAIAN T, ZHOU G J. State estimation with implicit constraints of circular trajectory using pseudo-measurements. IEEE Trans. on Aerospace and Electronic Systems, 2020. DOI:10.1109/TAES.2020.2988894.
|
32 |
ZHOU G J, LI K Y, KIRUBARAIAN T State estimation with trajectory shape constraints using pseudo-measurements. IEEE Trans. on Aerospace and Electronic Systems, 2019, 55 (5): 2395- 2407.
doi: 10.1109/TAES.2018.2887180
|
33 |
LIU C Y, SHUI P L, WEI G, et al Modified unscented Kalman filter using modified filter gain and variance scale factor for highly maneuvering target tracking. Journal of Systems Engineering and Electronics, 2014, 25 (3): 380- 385.
doi: 10.1109/JSEE.2014.00043
|
34 |
DENG F, CHEN J, CHEN C Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects. Journal of Systems Engineering and Electronics, 2013, 24 (4): 655- 665.
doi: 10.1109/JSEE.2013.00076
|
35 |
ARASARATNAM T, HAYKIN S Cubature Kalman filter. IEEE Trans. on Automatic Control, 2009, 54 (6): 1254- 1269.
doi: 10.1109/TAC.2009.2019800
|
36 |
NIE X, ZHANG F M Adaptive tracking algorithm based on 3D variable turn model. Journal of Systems Engineering and Electronics, 2017, 28 (5): 851- 860.
doi: 10.21629/JSEE.2017.05.04
|
37 |
JULIER S J A new method for nonlinear transformation of means and covariances in filters and estimates. IEEE Trans. on Automatic Control, 2000, 45 (3): 477- 482.
doi: 10.1109/9.847726
|
38 |
WAN E A, VAN D M R The unscented Kalman filter for nonlinear estimation. Proc. of the IEEE Adaptive Systems for Signal Processing, Communication and Control Symposium, 2000, 153- 158.
|