1 |
LIBERZON D. Switching in systems and control. Boston: Birkhauser, 2003.
|
2 |
TANWANI A, SHIM H, LIBERZON D Observability for switched linear systems: characterization and observer design. IEEE Trans. on Automatic Control, 2013, 58 (4): 891- 904.
doi: 10.1109/TAC.2012.2224257
|
3 |
RINEHART M, DAHLEH M, REED D, et al Suboptimal control of switched systems with an application to the disc engine. IEEE Trans. on Control Systems Technology, 2008, 16 (2): 189- 201.
doi: 10.1109/TCST.2007.903366
|
4 |
KOUVELAS A, ABOUDOLAS K, PAPAGEORGIOU M, et al A hybrid strategy for real-time traffic signal control of urban road networks. IEEE Trans. on Intelligent Transportation Systems, 2011, 12 (3): 884- 894.
doi: 10.1109/TITS.2011.2116156
|
5 |
BRYSON A E Optimal control−1950 to 1985. IEEE Control System Magazine, 1996, 16 (3): 26- 33.
doi: 10.1109/37.506395
|
6 |
LIU D R, XUE S, ZHAO B, et al Adaptive dynamic programming for control: a survey and recent advances. IEEE Trans. on System, Man, and Cybernetics: System, 2021, 51 (1): 142- 160.
doi: 10.1109/TSMC.2020.3042876
|
7 |
SOLER M, OLIVARES A, STAFFETTI E, et al Framework for aircraft trajectory planning toward an efficient air traffic management. Journal of Aircraft, 2012, 49 (1): 341- 348.
doi: 10.2514/1.C031490
|
8 |
GANS N R, HUTCHINSON S A Stable visual servoing through hybrid switched-system control. IEEE Trans. on Robotics, 2007, 23 (3): 530- 540.
doi: 10.1109/TRO.2007.895067
|
9 |
LI X F, DONG L, XUE L, et al Hybrid reinforcement learning for optimal control of non-linear switching system. IEEE Trans. on Neural Networks and Learning Systems, 2022.
doi: 10.1109/TNNLS.2022.3156287
|
10 |
SARGENT R Optimal control. Journal of Computational and Applied Mathematics, 2000, 124 (1): 361- 371.
|
11 |
AXELSSON H, EGERSTEDT M, WARDI Y, et al Algorithm for switching-time optimization in hybrid dynamical systems. Proc. of the IEEE International Conference on Control and Automation Intelligent Control, 2005, 256- 261.
doi: 10.1109/.2005.1467024
|
12 |
EGERSTEDT M, WARDI Y, AXELSSON H Transition-time optimization for switched-mode dynamical systems. IEEE Trans. on Automatic Control, 2006, 51 (1): 110- 115.
doi: 10.1109/TAC.2005.861711
|
13 |
LI S T, LIU X, TAN Y, et al Optimal switching time control of discrete-time switched autonomous systems. International Journal of Innovative Computing, Information and Control, 2015, 11 (6): 2043- 2050.
|
14 |
LUUS R, CHEN Y Optimal switching control via direct search optimization. Proc. of the IEEE International Symposium on Intelligent Control, 2003, 371- 376.
|
15 |
XU X P, ANTSAKLIS P J Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. on Automatic Control, 2004, 49 (1): 2- 16.
doi: 10.1109/TAC.2003.821417
|
16 |
SAKLY M, SAKLY A, MAJDOUB N, et al Optimization of switching instants for optimal control of linear switched systems based on genetic algorithms. IFAC Proceedings Volumes, 2009, 42 (19): 249- 253.
doi: 10.3182/20090921-3-TR-3005.00045
|
17 |
LONG R, FU J M, ZHANG L Y Optimal control of switched system based on neural network optimization. Proc. of the International Conference on Intelligent Computing, 2008, 799- 806.
|
18 |
RUNGGER M, STURSBERG O A numerical method for hybrid optimal control based on dynamic programming. Nonlinear Analysis: Hybrid Systems, 2011, 5 (2): 254- 274.
doi: 10.1016/j.nahs.2010.09.002
|
19 |
SUTTON R S, BARTO A G. Reinforcement Learning: an introduction. Cambridge: MIT Press, 2018.
|
20 |
MNIH V, KAVUKCUOGLU K, SILVER D, et al Human-level control through deep reinforcement learning. Nature, 2015, 518 (7540): 529- 533.
doi: 10.1038/nature14236
|
21 |
SILVER D, HUBERT T, SCHRITTWIESER J, et al A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, 2018, 362 (6419): 1140- 1144.
doi: 10.1126/science.aar6404
|
22 |
BERTSEKAS D P. Neuro-dynamic programming. Belmont: Athena Scientific, 1996.
|
23 |
LEWIS F L, VRABIE D Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits and Systems Magazine, 2009, 9 (3): 32- 50.
doi: 10.1109/MCAS.2009.933854
|
24 |
SI J, WANG Y T Online learning control by association and reinforcement. IEEE Trans. on Neural networks, 2001, 12 (2): 264- 276.
doi: 10.1109/72.914523
|
25 |
LI X F, DONG L, SUN C Y Data-based optimal tracking of autonomous nonlinear switching systems. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (1): 227- 238.
doi: 10.1109/JAS.2020.1003486
|
26 |
AL-TAMIMI A, LEWIS F L, ABU-KHALAF M Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, 38 (4): 943- 949.
doi: 10.1109/TSMCB.2008.926614
|
27 |
MU C X, WANG D, HE H B Novel iterative neural dynamic programming for data-based approximate optimal control design. Automatica, 2017, 81, 240- 252.
doi: 10.1016/j.automatica.2017.03.022
|
28 |
LUO B, WU H N, HUANG T W, et al Data-based approximate policy iteration for affine nonlinear continuous-time optimal control design. Automatica, 2014, 50 (12): 3281- 3290.
doi: 10.1016/j.automatica.2014.10.056
|
29 |
ZHANG H G, SONG R Z, WEI Q L, et al Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming. IEEE Trans. on Neural Networks, 2011, 22 (12): 1851- 1862.
doi: 10.1109/TNN.2011.2172628
|
30 |
ZHANG H G, LUO Y H, LIU D R Neural-network-based near optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Trans. on Neural Networks, 2009, 20 (9): 1490- 1503.
doi: 10.1109/TNN.2009.2027233
|
31 |
DONG L, ZHONG X N, SUN C Y, et al Adaptive event-triggered control based on heuristic dynamic programming for nonlinear discrete-time systems. IEEE Trans. on Neural Networks and Learning Systems, 2016, 28 (7): 1594- 1605.
|
32 |
HEYDARI A Optimal switching of DC-DC power converters using approximate dynamic programming. IEEE Trans. on Neural Networks and Learning Systems, 2016, 29 (3): 586- 596.
|
33 |
HEYDARI A Optimal switching with minimum dwell time constraint. Journal of the Franklin Institute, 2017, 354 (11): 4498- 4518.
doi: 10.1016/j.jfranklin.2017.04.015
|
34 |
LIU D R, WANG D, ZHAO D B Neural-network based optimal control for a class of unknown discrete-time nonlinear systems using globalized dual heuristic programming. IEEE Trans. on Automation Science and Engineering, 2012, 9 (3): 628- 634.
doi: 10.1109/TASE.2012.2198057
|
35 |
ZHANG H G, QIN C, LUO Y H Neural-network-based constrained optimal control scheme for discrete-time switched nonlinear system using dual heuristic programming. IEEE Trans. on Automation Science and Engineering, 2014, 11 (3): 839- 849.
doi: 10.1109/TASE.2014.2303139
|
36 |
MU C X, LIAO K, REN L, et al Approximately optimal control of discrete-time nonlinear switched systems using globalized dual heuristic programming. Neural Processing Letters, 2020, 52 (2): 1089- 1108.
doi: 10.1007/s11063-020-10278-9
|
37 |
GU S X, LILLICRAP T, SUTSKEVER I, et al Continuous deep Q-learning with model-based acceleration. Proc. of the International Conference on Machine Learning, 2016, 2829- 2838.
|
38 |
LEWIS F L, VRABIE D, SYRMOS V L. Optimal control. New Jersey: John Wiley & Sons, 2012.
|