1 |
LIU L P, DIETTERICH T G A conditional multinomial mixture model for superset label learning. Advances in Neural Information Processing Systems, 2012, 1, 548- 556.
|
2 |
ZHOU D, ZHANG Z, ZHANG M L, et al Weakly supervised POS tagging without disambiguation. ACM Transactions on Asian and Low-Resource Language Information Processing, 2018, 17 (4): 1- 19.
|
3 |
ZENG Z N, XIAO S J, JIA K, et al Learning by associating ambiguously labeled images. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, 708- 715.
|
4 |
YAO Y, DENG J H, CHEN X H, et al Deep discriminative CNN with temporal ensembling for ambiguously-labeled image classification. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 12669- 12676.
doi: 10.1609/aaai.v34i07.6959
|
5 |
HULLERMEIER E, BERINGER J Learning from ambiguously labeled examples. Intelligent Data Analysis, 2006, 10 (5): 419- 439.
doi: 10.3233/IDA-2006-10503
|
6 |
COUR T, SAPP B, TASKAR B Learning from partial labels. Journal of Machine Learning Research, 2011, 12, 1501- 1536.
|
7 |
NGUYEN N, CARUANA R Classification with partial labels. Proc. of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, 551- 559.
|
8 |
ZHANG M L, YU F Solving the partial label learning problem: an instance-based approach. Proc. of the International Joint Conference on Artificial Intelligence, 2015, 4048- 4054.
|
9 |
ZHANG M L, ZHOU B B, LIU X Y Partial label learning via feature-aware disambiguation. Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 1335- 1344.
|
10 |
GONG C, LIU T L, TANG Y Y, et al A regularization approach for instance-based superset label learning. IEEE Trans. on Cybernetics, 2017, 48 (3): 967- 978.
|
11 |
WANG D B, LI L, ZHANG M L Adaptive graph guided disambiguation for partial label learning. Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, 83- 91.
|
12 |
LYU G Y, FENG S H, WANG T, et al GM-PLL: graph matching based partial label learning. IEEE Trans. on Knowledge and Data Engineering, 2021, 33 (2): 521- 535.
doi: 10.1109/TKDE.2019.2933837
|
13 |
ZHU Y, KWOK J T, ZHOU Z H Multi-label learning with global and local label correlation. IEEE Trans. on Knowledge and Data Engineering, 2017, 30 (6): 1081- 1094.
|
14 |
FENG L, AN B Partial label learning by semantic difference maximization. Proc. of the International Joint Conference on Artificial Intelligence, 2019, 2294- 2300.
|
15 |
JIN R, GHAHRAMANI Z Learning with multiple labels. Proc. of the Annual Conference on Neural Information Processing Systems, 2002, 2, 897- 904.
|
16 |
YU F, ZHANG M L Maximum margin partial label learning. Proc. of the Asian Conference on Machine Learning, 2016, 96- 111.
|
17 |
CHEN Y C, PATEL V M, CHELLAPPA R, et al Ambiguously labeled learning using dictionaries. IEEE Trans. on Information Forensics and Security, 2014, 9 (12): 2076- 2088.
doi: 10.1109/TIFS.2014.2359642
|
18 |
TANG C Z, ZHANG M L Confidence-rated discriminative partial label learning. Proc. of the AAAI Conference on Artificial Intelligence, 2017, 31 (1): 2611- 1618.
|
19 |
LYU G Y, FENG S H, LI Y D, et al Hera: partial label learning by combining heterogeneous loss with sparse and low-rank regularization. ACM Trans. on Intelligent Systems and Technology, 2020, 11 (3): 1- 19.
|
20 |
ZHANG Y B, YANG G, ZHAO S Y, et al Partial label learning via generative adversarial nets. Proc. of the European Conference on Artificial Intelligence, 2020, 1674- 1681.
|
21 |
ZHANG M L, YU F, TANG C Z Disambiguation-free partial label learning. IEEE Trans. on Knowledge and Data Engineering, 2017, 29 (10): 2155- 2167.
doi: 10.1109/TKDE.2017.2721942
|
22 |
WU X, ZHANG M L Towards enabling binary decomposition for partial label learning. Proc. of the International Joint Conference on Artificial Intelligence, 2018, 2868- 2874.
|
23 |
YUILLE A L, RANGARAJAN A The concave-convex procedure (CCCP). Advances in Neural Information Processing Systems, 2002, 2, 1033- 1040.
|
24 |
SRIPERUMBUDUR B K, LANCKRIET G R G On the convergence of the concave-convex procedure. Proc. of the Annual Conference on Neural Information Processing Systems, 2009, 9, 1759- 1767.
|
25 |
XU S, YANG M, ZHOU Y, et al Partial label metric learning by collapsing classes. International Journal of Machine Learning and Cybernetics, 2020, 11, 2453- 2460.
doi: 10.1007/s13042-020-01129-z
|
26 |
LYU J Q, XU M, FENG L, et al Progressive identification of true labels for partial-label learning. Proc. of the International Conference on Machine Learning, 2020, 6500- 6510.
|
27 |
YAN Y, GUO Y H Partial label learning with batch label correction. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 34 (4): 6575- 6582.
doi: 10.1609/aaai.v34i04.6132
|
28 |
PANIS G, LANITIS A, TSAPATSOULIS N, et al Overview of research on facial ageing using the FG-NET ageing database. IET Biometrics, 2016, 5 (2): 37- 46.
doi: 10.1049/iet-bmt.2014.0053
|
29 |
BRIGGS F, FERN X Z, RAICH R Rank-loss support instance machines for MIML instance annotation. Proc. of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012, 534- 542.
|
30 |
GUILLAUMIN M, VERBEEK J, SCHMID C Multiple instance metric learning from automatically labeled bags of faces. European Conference on Computer Vision, 2010, 634- 647.
|