1 |
JACKSON L, CHIEN H Frequency and bearing estimation by two-dimensional linear prediction. Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1979, 665- 668.
|
2 |
ZOLTOWSKI M D, MATHEWS C P Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling. IEEE Trans. on Signal Processing, 1994, 42 (10): 2781- 2794.
doi: 10.1109/78.324743
|
3 |
HAARDT M, NOSSEK J A 3-D unitary ESPRIT for joint 2-D angle and carrier estimation. Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1997, 255- 258.
|
4 |
STROBACH P Total least squares phased averaging and 3-D ESPRIT for joint azimuth-elevation-carrier estimation. IEEE Trans. on Signal Processing, 2001, 49 (1): 54- 62.
doi: 10.1109/78.890341
|
5 |
YU H X, ZHANG X F, CHEN X Q, et al Computationally efficient DOA tracking algorithm in monostatic MIMO radar with automatic association. International Journal of Antennas and Propagation, 2014, 2014, 501478.
|
6 |
SCHMIDT R Multiple emitter location and signal parameter estimation. IEEE Trans. on Antennas and Propagation, 1986, 34 (3): 276- 280.
doi: 10.1109/TAP.1986.1143830
|
7 |
ROY R, KAILATH T ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37 (7): 984- 995.
doi: 10.1109/29.32276
|
8 |
STOICA P, HANDEL P, SODERSTROM T Study of Capon method for array signal processing. Circuits, Systems and Signal Processing, 1995, 14 (6): 749- 770.
doi: 10.1007/BF01204683
|
9 |
TAYEM N, KWON H M L-shape 2-dimensional arrival angle estimation with propagator method. IEEE Trans. on Antennas and Propagation, 2005, 53 (5): 1622- 1630.
doi: 10.1109/TAP.2005.846804
|
10 |
CLARK M P, SCHARF L L Two-dimensional modal analysis based on maximum likelihood. IEEE Trans. on Signal Processing, 1994, 42 (6): 1443- 1452.
doi: 10.1109/78.286959
|
11 |
YIN Q Y, NEWCOMB R W, ZOU L H Estimating 2-D angles of arrival via two parallel linear arrays. Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1989, 2803- 2806.
|
12 |
YIN Q Y, NEWCOMB R W, MUNJAL S, et al Relation between the DOA matrix method and the ESPRIT method. Proc. of the IEEE International Symposium on Circuits and Systems, 1990, 1561- 1564.
|
13 |
LIN J D, FANG W H, WANG Y Y, et al FSF MUSIC for joint DOA and frequency estimation and its performance analysis. IEEE Trans. on Signal Processing, 2006, 54 (12): 4529- 4542.
doi: 10.1109/TSP.2006.882112
|
14 |
OGAWA Y, HAMAGUCHI N, OHSHIMA K, et al High-resolution analysis of indoor multipath propagation structure. IEICE Trans. on Communications, 1995, E78B (11): 1450- 1457.
|
15 |
WANG Y Y, CHEN J T, FANG W H TST-MUSIC for joint DOA-delay estimation. IEEE Trans. on Signal Processing, 2001, 49 (4): 721- 729.
doi: 10.1109/78.912916
|
16 |
WANG X D Joint angle and frequency estimation using multiple-delay output based on ESPRIT. EURASIP Journal on Advances in Signal Processing, 2010, 2010 (1): 358659.
doi: 10.1155/2010/358659
|
17 |
WANG X D, ZHANG X F, LI J F, et al Improved ESPRIT method for joint direction-of-arrival and frequency estimation using multiple-delay output. International Journal of Antennas and Propagation, 2012, 2012, 309269.
|
18 |
SUN Z W, ZHANG X F, WU H L, et al Propagator method-based joint angle and frequency estimation using multiple delay output. ICIC Express Letters, 2011, 2 (4): 827- 832.
|
19 |
WAX M, LESHEM A Joint estimation of time delays and directions of arrival of multiple reflections of a known signal. IEEE Trans. on Signal Processing, 1997, 45 (10): 2477- 2484.
doi: 10.1109/78.640713
|
20 |
WANG S, ZHOU X L Direction-of-arrival and frequency estimation in array signal processing. Journal of Shanghai Jiaotong University, 1999, 33 (1): 40- 42.
|
21 |
ZOLTOWSKI M D, HAARDT M, MATHEWS C P Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Trans. on Signal Processing, 1996, 44 (2): 316- 328.
doi: 10.1109/78.485927
|
22 |
DAI X R, ZHANG X F, WANG Y F Extended DOA-matrix method for DOA estimation via two parallel linear arrays. IEEE Communications Letters, 2019, 23 (11): 1981- 1984.
doi: 10.1109/LCOMM.2019.2939245
|
23 |
YAO B B, WANG W J, YIN Q Y DOD and DOA estimation in bistatic non-uniform multiple-input multiple-output radar systems. IEEE Communications Letters, 2012, 16 (11): 1796- 1799.
doi: 10.1109/LCOMM.2012.091212.121605
|
24 |
PAL P, VAIDYANATHAN P P Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. on Signal Processing, 2010, 58 (8): 4167- 4181.
doi: 10.1109/TSP.2010.2049264
|
25 |
DU R Y, WANG J K, LIU F L Space-time matrix method for joint frequency and 2-D DOA estimation. Proc. of the International Conference on Information Science and Engineering, 2009, 671- 674.
|
26 |
XU L Y, ZHANG X F, XU Z Z Joint 2D angle and frequency estimation method based on parallel factor quadrilinear decomposition. Journal of Electronics & Information Technology, 2011, 33 (8): 1889- 1894.
|
27 |
LI S, SUN Z Z, ZHANG X F, et al Joint DOA and frequency estimation for linear array with compressed sensing PARAFAC framework. Journal of Circuits, Systems and Computers, 2017, 26 (9): 1750136.
doi: 10.1142/S0218126617501365
|
28 |
SHAFIN R, LIU L J, LI Y, et al Angle and delay estimation for 3-D massive MIMO/FD-MIMO systems based on parametric channel modeling. IEEE Trans. on Wireless Communications, 2017, 16 (8): 5370- 5383.
doi: 10.1109/TWC.2017.2710046
|
29 |
LIN J C, MA X C, YAN S F, et al Time-frequency multi-invariance ESPRIT for DOA estimation. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 770- 773.
doi: 10.1109/LAWP.2015.2473664
|
30 |
WU R H, XU L, ZHANG Z H, et al Joint 2-D DOA and Doppler estimation for L-shaped array via dual PARAFAC with triple matching implementation. IEEE Access, 2019, 7, 51749- 51758.
doi: 10.1109/ACCESS.2019.2910889
|
31 |
XU L, WU R H, ZHANG X F, et al Joint two-dimensional DOA and frequency estimation for L-shaped array via compressed sensing PARAFAC method. IEEE Access, 2018, 6, 37204- 37213.
doi: 10.1109/ACCESS.2018.2850307
|
32 |
DI A Z Multiple source location—a matrix decomposition approach. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1985, 33 (5): 1086- 1091.
doi: 10.1109/TASSP.1985.1164700
|
33 |
HUANG L, LONG T, MAO E, et al MMSE-based MDL method for robust estimation of number of sources without eigendecomposition. IEEE Trans. on Signal Processing, 2009, 57 (10): 4135- 4142.
doi: 10.1109/TSP.2009.2024043
|
34 |
HSIEN-TSAI W, JAR-FERR Y, FWU-KUEN C Source number estimator using Gerschgorin disks. Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1994, 261- 264.
|
35 |
ZHENG C D, FENG D Z, ZHOU Y Detection of number of sources via exploitation of non-circular property. Journal of Xidian University, 2006, 33 (3): 466- 470.
|
36 |
STOICA P, NEHORAI A MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37 (5): 720- 741.
doi: 10.1109/29.17564
|