1 |
HARLE R A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials, 2013, 15 (3): 1281- 1293.
|
2 |
FALLAH N, APOSTOLOPOULOS I, BEKRIS K, et al Indoor human navigation systems: a survey. Interacting with Computers, 2013, 25 (1): 21- 33.
|
3 |
HONKAVIRTA V, PERALA T, ALI-LOYTTY S, et al A comparative survey of WLAN location fingerprinting methods. Proc. of the 6th Workshop on Positioning, Navigation and Communication, 2009, 243- 251.
|
4 |
ELLOUMI W, LATOUI A, CANALS R, et al Indoor pedestrian localization with a smartphone: a comparison of inertial and vision-based methods. IEEE Sensors Journal, 2016, 16 (13): 5376- 5388.
doi: 10.1109/JSEN.2016.2565899
|
5 |
HSU Y L, WANG J S, CHANG C W A wearable inertial pedestrian navigation system with quaternion-based extended Kalman filter for pedestrian localization. IEEE Sensors Journal, 2017, 17 (10): 3193- 3206.
doi: 10.1109/JSEN.2017.2679138
|
6 |
ZHAO Y L, LIANG J Q, SHA X P, et al Estimation of pedestrian altitude inside a multi-story building using an integrated micro-IMU and barometer device. IEEE Access, 2019, 7, 84680- 84689.
doi: 10.1109/ACCESS.2019.2924664
|
7 |
MADGWICK S O H, HARRISON A J L, VAIDYANATHAN R Estimation of IMU and MARG orientation using a gradient descent algorithm. Proc. of the IEEE International Conference on Rehabilitation Robotics, 2011, 1- 7.
|
8 |
GROVES P D Navigation using inertial sensors. IEEE Aerospace and Electronic Systems Magazine, 2015, 30 (2): 42- 69.
doi: 10.1109/MAES.2014.130191
|
9 |
FOXLIN E Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications, 2005, 25 (6): 38- 46.
doi: 10.1109/MCG.2005.140
|
10 |
PARK S K, SUH Y S A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems. Sensors, 2010, 10 (10): 9163- 9178.
doi: 10.3390/s101009163
|
11 |
WAHLSTROM J, SKOG I Fifteen years of progress at zero velocity: a review. IEEE Sensors Journal, 2020, 21 (2): 1139- 1151.
|
12 |
TJHAI C. Integration of multiple low-cost wearable inertial/magnetic sensors and kinematics of lower limbs for improving pedestrian navigation systems. Alberta: University of Calgary, 2019.
|
13 |
NORRDINE A, KASMI Z, BLANKENBACH J Step detection for ZUPT-aided inertial pedestrian navigation system using foot-mounted permanent magnet. IEEE Sensors Journal, 2016, 16 (17): 6766- 6773.
doi: 10.1109/JSEN.2016.2585599
|
14 |
JIMENEZ A R, SECO F, ZAMPELLA F, et al PDR with a foot-mounted IMU and ramp detection. Sensors, 2011, 11 (10): 9393- 9410.
doi: 10.3390/s111009393
|
15 |
BORENSTEIN J, OJEDA L Heuristic drift elimination for personnel tracking systems. The Journal of Navigation, 2010, 63 (4): 591- 606.
doi: 10.1017/S0373463310000184
|
16 |
JIMENEZ A R, SECO F, ZAMPELLA F, et al Improved heuristic drift elimination (iHDE) for pedestrian navigation in complex buildings. Proc. of the International Conference on Indoor Positioning and Indoor Navigation, 2011, 1- 8.
|
17 |
SKOG I, HANDEL P, NILSSON J O, et al Zero-velocity detection—an algorithm evaluation. IEEE Trans. on Biomedical Engineering, 2010, 57 (11): 2657- 2666.
doi: 10.1109/TBME.2010.2060723
|
18 |
CGROVES P D. Principles of GNSS, inertial, and multi-sensor integrated navigation systems. USA: Artech House Verlag, 2013.
|
19 |
FISCHER C, SUKUMAR P T, HAZAS M Tutorial: implementing a pedestrian tracker using inertial sensors. IEEE Pervasive Computing, 2012, 12 (2): 17- 27.
|
20 |
SKOG I, HANDEL P A low-cost GPS aided inertial navigation system for vehicle applications. Proc. of the 13th European Signal Processing Conference, 2005, 1- 4.
|
21 |
WANG Y S, CHERNYSHOFF A, SHKEL A M Study on estimation errors in ZUPT-aided pedestrian inertial navigation due to IMU noises. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (3): 2280- 2291.
|
22 |
ZHU M, WU Y, LUO S. A pedestrian navigation system by low-cost dual foot-mounted IMUs and inter-foot ranging. Proc. of the German Institute of Navigation Inertial Sensors and Systems, 2020: 1−20.
|