Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (3): 647-664.doi: 10.23919/JSEE.2022.000060
收稿日期:
2020-11-30
接受日期:
2022-05-06
出版日期:
2022-06-18
发布日期:
2022-06-24
Lin TANG1(), Leilei SUN1,2(), Chonghui GUO1,*(), Zhen ZHANG1()
Received:
2020-11-30
Accepted:
2022-05-06
Online:
2022-06-18
Published:
2022-06-24
Contact:
Chonghui GUO
E-mail:tanglin@dlut.edu.cn;leileisun@buaa.edu.cn;dlutguo@dlut.edu.cn;zhen.zhang@dlut.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 647-664.
Lin TANG, Leilei SUN, Chonghui GUO, Zhen ZHANG. Adaptive spectral affinity propagation clustering[J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 647-664.
"
Method | Density estimator | s'(i, j)=1 |
DBSCAN | | Density-connected |
Mean-shift | | Same ending point |
DPC | | Same density peak |
"
Index | Aspect | Indicator | |
1 | Demographic | Age, Gender | |
2 | Vital signs (24-hour average values on admission to ICU) | Heart rate, arterial pressure, body temperature, oxygen saturation, respiratory rate, central venous pressure | |
3 | Blood gas | Base excess, buffer base, hemoglobin, lactate, PCO2, PH, PO2, white blood cells | |
4 | Incoming and outgoing | Incoming, outgoing, and balance volumes | |
5 | Patient diagnosis | Simplified acute physioligy score (SAPS), sofa | |
6 | Parameters related to mechanical ventilation | Positive end expiratory pressure (PEEP), fraction of inspiration O2 (FiO2), tidal volume (VT), peak pressure, average pressure, inspiratory plateau pressure | |
7 | Patient end results | Whether or not dead in the ICU, alive days from the admission into the ICU |
1 | HAN J W, KAMBER M, PEI J. Data mining: concepts and techniques. 3rd ed. California: Morgan Kaufmann, 2011. |
2 | JAIN A K. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 2010, 31(8): 651–666. |
3 | CHEN X L, XIE H R, WANG F L, et al. A bibliometric analysis of natural language processing in medical research. BMC Medical Informatics and Decision Making, 2018, 18(1): 14. |
4 | ABDOLREZA H. Black hole: a new heuristic optimization approach for data clustering. Information Sciences, 2013, 222(3): 175–184. |
5 | XU D K, TIAN Y J. A comprehensive survey of clustering algorithms. Annals of Data Science. 2015, 2(2): 165–193. |
6 | FREY B J, DUECK D Clustering by passing messages between data points. Science, 2007, 315 (5814): 927- 976. |
7 | KARIV O, HAKIMI S An algorithmic approach to network location problems. I: the p-centers. SIAM Journal on Applied Mathematics, 1979, 37 (3): 513- 538. |
8 | FREY B J, DUECK D Response to comment on “clustering by passing messages between data points”. Science, 2008, 319 (5864): 726. |
9 | LI P, JI H F, WANG B L, et al Adjustable preference affinity propagation clustering. Pattern Recognition Letters, 2017, 85 (C): 72- 78. |
10 | FAN Z Y, JIANG J, WENG S Q, et al Adaptive density distribution inspired affinity propagation clustering. Neural Computing and Applications, 2019, 31 (1): 435- 445. |
11 | GUAN R C, SHI X H, MARCHESE M, et al Text clustering with seeds affinity propagation. IEEE Trans. on Knowledge and Data Engineering, 2011, 23 (4): 627- 637. |
12 | KAZANTSEVA A, SZPAKOWICZ S Linear text segmentation using affinity propagation. Proc. of the Conference on Empirical Methods in Natural Language Processing, 2011, 284- 293. |
13 | LEONE M, SUMEDHA, WEIGT M Clustering by soft-constraint affinity propagation: applications to gene-expression data. Bioinformatics, 2007, 23 (20): 2708- 2715. |
14 | FARINELLI A, DENITTO M, BICEGO M Biclustering of expression microarray data using affinity propagation. Proc. of the IAPR International Conference on Pattern Recognition in Bioinformatics, 2011, 13- 24. |
15 | JIA C Y, JIANG Y W, YU J Affinity propagation on identifying communities in social and biological networks. Proc. of the International Conference on Knowledge Science, 2010, 597- 602. |
16 | LAI D R, NARDINI C, LU H T Partitioning networks into communities by message passing. Physics Review E, 2011, 83 (1): 16115. |
17 | ARZENO N M, VIKALO H Semi-supervised affinity propagation with soft instance-level constraints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2015, 37 (5): 1041- 1052. |
18 | ZHOU R H, LIU Q M, WANG J, et al Modified semi-supervised affinity propagation clustering with fuzzy density fruit fly optimization. Neural Computing and Applications, 2021, 33, 4695- 4712. |
19 | ANNA K, STAN S Hierarchical topical segmentation with affinity propagation. Proc. of the 25th International Conference on Computational Linguistics, 2014, 37- 47. |
20 | SUN L L, GUO C H Incremental affinity propagation clustering based on message passing. IEEE Trans. on Knowledge and Data Engineering, 2014, 26 (11): 2731- 2744. |
21 | SUN L L, GUO C H, LIU C R, et al Fast affinity propagation clustering based on incomplete similarity matrix. Knowledge and Information Systems, 2017, 51 (3): 941- 963. |
22 | LI Y, GUO C H, SUN L L Fast clustering by affinity propagation based on density peaks. IEEE Access, 2020, 8, 138884- 138897. |
23 | MEZARD M Where are the exemplars. Science, 2007, 315 (5814): 949- 951. |
24 | BELKIN M, NIYOGI P Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15 (6): 1373- 1396. |
25 | BENGIO Y, DELALLEAU O, ROUX N L, et al Learning eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 2004, 16 (10): 2197- 2219. |
26 | DHILLON I S, GUAN Y Q, KULIS B Kernel K-means: spectral clustering and normalized cuts . Proc. of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, 551- 556. |
27 | ESTER M, KRIEGEL H P, SANDER J, et al A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. of the Second International Conference on Knowledge Discovery and Data Mining, 1996, 226- 231. |
28 | FUKUNAGA K, HOSTETLER L D The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975, 21 (1): 32- 40. |
29 | CHENG Y Z Mean shift, mode seeking, and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, 17 (8): 790- 799. |
30 | COMANICIU D, MEER P Mean shift: a robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24 (5): 603- 619. |
31 | RODRIGUEZ A, LAIO A Clustering by fast search and find of density peaks. Science, 2014, 344 (6191): 1492- 1496. |
32 | SUN L L, CHEN G Q, XIONG H, et al Cluster analysis in data-driven management and decisions. Journal of Management Science and Engineering, 2017, 2 (4): 227. |
33 | KARYPIS G, HAN E, KUMAR V Chameleon: hierarchical clustering using dynamic modeling. IEEE Computer, 1999, 32 (8): 68- 75. |
34 | SCHOLKOPF B, SMOLA A, MULLER K Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10 (5): 1299- 1319. |
35 | NG A Y, JORDAN M I, WEISS Y On spectral clustering: analysis and an algorithm. Proc. of the 14th International Conference on Neural Information Processing Systems, 2001, 849- 856. |
36 | WANG L J, DING S F, JIA H J An improvement of spectral clustering an improvement of spectral clustering via message passing and density sensitive similarity. IEEE Access, 2019, 7, 101054- 101062. |
37 | WANG Y R, DING S F, WANG L J, et al An improved density-based adaptive p-spectral clustering algorithm. International Journal of Machine Learning and Cybernetics, 2020, 3691304. |
38 | VINH N X, EPPS J, BAILEY J. Information theoretic measures for clustering comparison: is a correction for chance necessary? Journal of Machine Learning Research, 2010, 11: 2837–2854. |
39 | ARBELAEZ P, MAIRE M, FOWLKES C, et al Contour detection and hierarchical image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011, 33 (5): 898- 916. |
40 | PASI F, SAMI S K-means properties on six clustering benchmark datasets . Applied Intelligence, 2018, 48 (12): 4743- 4759. |
41 | BAGHSHAH M S, SHOURAKI S B Kernel-based metric learning for semi-supervised clustering. Neurocomputing, 2010, 73 (7/9): 1352- 1361. |
42 | CHEN W F, FENG G C Spectral clustering with discriminant cuts. Knowledge-Based Systems, 2012, 28, 27- 37. |
43 | FANTI P, SIERANOJA S. K-means properties on six clustering benchmark datasets. Applied Intelligence, 48(12), 4743–4759. |
44 | FISCHER B, BUHMANN J M Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25 (4): 513- 518. |
45 | CHANG H, YEUNG D Y Robust path-based spectral clustering. Pattern Recognition, 2008, 41 (1): 191- 203. |
46 | MARTIN D, FOWLKES C, TAL D, et al. Berkeley segmentation dataset. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. |
47 | AT&T Laboratories Cambridge. The ORL database of faces. https://cam-orl.co.uk/facedatabase.html. |
48 | GRAHAM D. The UMIST dataset. https://www.visioneng.org.uk/datasets/. |
49 | RECOGNITION F. Yale face database. http://vision.ucsd.edu/content/yale-face-database. |
50 | HUANG P, TANG Z M, CHEN C K, et al Local maximal margin discriminant embedding for face recognition. Journal of Visual Communication and Image Representation, 2014, 25 (2): 296- 305. |
51 | RADUCANU B, DORNAIKA F A supervised non-linear dimensionality reduction approach for manifold learning. Pattern Recognition, 2012, 45 (6): 2432- 2444. |
52 | JOHNSON A, POLLARD T J, SHEN L, et al MIMIC-III, a freely accessible critical care database. Scientific Data, 2016, 3 (1): 160035. |
53 | SU L X, ZHANG R M, ZHANG Q, et al The effect of mechanical ventilation on peripheral perfusion index and its association with the prognosis of critically ill patients. Critical Care Medicine, 2019, 47 (5): 685- 690. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||