Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (3): 600-611.doi: 10.23919/JSEE.2022.000058
收稿日期:
2021-02-04
出版日期:
2022-06-18
发布日期:
2022-06-24
Luda ZHAO1(), Bin WANG1,2,*(), Jun HE1, Xiaoping JIANG1()
Received:
2021-02-04
Online:
2022-06-18
Published:
2022-06-24
Contact:
Bin WANG
E-mail:zhaoluda@nudt.edu.cn;49584951@qq.com;xiaoping.jiang@nudt.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 600-611.
Luda ZHAO, Bin WANG, Jun HE, Xiaoping JIANG. SE-DEA-SVM evaluation method of ECM operational disposition scheme[J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 600-611.
"
Index | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 |
A11 | 0.4230 | 0.6500 | 0.2546 | 0.3463 | 0.3453 |
A12 | 0.0100 | 0.1700 | 0.9400 | 0.1900 | 0.6100 |
A13 | 0.1200 | 0.2300 | 0.1500 | 0.2100 | 0.2900 |
A21 | 0.1800 | 0.4800 | 0.1700 | 0.0700 | 0.1800 |
A22 | 0.1200 | 0.1200 | 0.0200 | 0.2800 | 0.0940 |
A23/W | 9800 | 1100 | 5300 | 1500 | 9000 |
A31 | 0.9800 | 0 | 0.7000 | 0.7200 | 0.9800 |
A41 | 0.2600 | 0.2700 | 0.5500 | 0.1400 | 0.3700 |
A42 | 0.4000 | 0.4200 | 0.6200 | 0.3500 | 0.5500 |
A43/s?1 | 0.3000 | 0.3200 | 0.8300 | 0.1500 | 0.9500 |
A44/m | 2800 | 400 | 4200 | 5000 | 4600 |
A51 | 0.1200 | 0.1200 | 0.0200 | 0.2800 | 0.0940 |
A52 | 0.1800 | 0.4800 | 0.0700 | 0.2700 | 0.1800 |
"
Index | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 |
A11 | 0.4259 | 1 | 0 | 0.2319 | 0.2294 |
A12 | 0 | 0.1720 | 1 | 0.1935 | 0.6452 |
A13 | 0 | 0.6471 | 0.1765 | 0.5294 | 1 |
A21 | 0.2683 | 1 | 0.2439 | 0 | 0.2683 |
A22 | 0.3846 | 0.3846 | 0 | 1 | 0.2846 |
A23/W | 1 | 0 | 0.4828 | 0.0459 | 0.0919 |
A31 | 1 | 0 | 0.7143 | 0.7347 | 1 |
A41 | 0.2927 | 0.3170 | 1 | 0 | 0.5609 |
A42 | 0.1852 | 0.2593 | 1 | 0 | 0.7407 |
A43/s?1 | 0.1875 | 0.2125 | 0.8500 | 0 | 1 |
A44/m | 0.5217 | 0 | 0.8261 | 1 | 0.9130 |
A51 | 0.3846 | 0.3846 | 0 | 1 | 0.2846 |
A52 | 0.2683 | 1 | 0 | 0.4878 | 0.2683 |
"
Case | Relaxation variable | | | ||||||||||||
| | | | | | | | | | | | | |||
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.214 |
2 | 0.55465 | 0.76000 | 2.45000 | 15.2000 | 112 | 1.27000 | 1.39000 | 0.34000 | 0.34000 | 1.75000 | 0.05000 | 0.85000 | 1450 | 0 | 0.991 |
3 | 0.54230 | 0.71000 | 2.43000 | 15.6000 | 127 | 0.80000 | 0.60000 | 0.28000 | 0.28000 | 0.64000 | 0.04000 | 1.92000 | 1065 | 0 | 1.051 |
4 | 0.48050 | 0.15000 | 2.61000 | 17.6000 | 121 | 1.06000 | 0.51000 | 0.31000 | 0.31000 | 0.04998 | 0.06000 | 1.58000 | 1295 | 0 | 0.847 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.169 |
1 | Military Committee of the Army. Military language of the Chinese People’s Liberation Army. Beijing: Military Science Press, 2011. |
2 | HOU B E, TIAN H D, GAO Y Safety assessment method of shipborne anti-torpedo weapon system based on Fuzzy-AHP. Firepower and Command Control, 2019, 44 (11): 102- 106. |
3 | ZHANG C K, LIU J G, CHANG W T, et al. Selection of communication system based on fuzzy modified DEA. Proc. of the IEEE Information Technology, Networking, Electronic and Automation Control Conference, 2016: 103 − 106. |
4 | YANG S L, ZHANG C, WANG P, et al. Integrated decision making framework for weapon application under uncertain environment. Proc. of the IEEE 7th Joint International Information Technology and Artificial Intelligence Conference, 2014: 468 − 472. |
5 | HOU L, LIU X W, HE M Research on configuration optimization of communication jamming equipment based on rough DEA theory. Fire Control & Command Control, 2013, 38 (6): 81- 84. |
6 | ZHENG G J, REN J, LI Z P Evaluation on radar network performance based on improved BP neural network model. Journal of Air Force Early Warning Academy, 2019, 33 (2): 116- 120. |
7 | ZHAO P J, LI J G, LI H X Optimization of troops maneuver deployment for key-point air defense based on memetic algorithm. Fire Control & Command Control, 2018, 43 (9): 25- 29. |
8 | ZHAO P J, LI J G. Deployment optimization of air defense force deployment based on memetic algorithm. Proc. of the IEEE 29th Chinese Control And Decision Conference, 2017: 5538 − 5543. |
9 | WEN B Q, WANG T, CHENG K, et al End-defense force optimization deploymeot method based on PSO-GA hybrid algorithm. Journal of Sichuan Ordnance, 2019, 40 (11): 45- 49. |
10 | CHEN C, JIE C, ZHANG C M. Deployment optimization for air defense based on artificial potential field. Proc. of the IEEE 8th Asian Control Conference, 2011: 812 − 816. |
11 | ZAK M, BUCKA P Decision making process and the algorithm of air combat simulation. Review of the Air Force Academy, 2009, 16 (2): 87- 93. |
12 | DENG G M, ZHOU X G, FENG B S, et al Research of troop disposition of carrier-based anti-submarine airplane based on game theory. Fire Control & Command Control, 2017, 42 (4): 63- 66. |
13 |
RAWAT P S, DIMRI P, SAROHA G P Virtual machine allocation to the task using an optimization method in cloud computing environment. International Journal of Information Technology, 2020, 12 (2): 485- 493.
doi: 10.1007/s41870-018-0242-9 |
14 | RAN J P, ZHAO S H, WANG X Research on optimization strategy of centralized controller deployment in airborne information network. Journal of Frontiers of Computer Science & Technology, 2020, 14 (6): 966- 974. |
15 |
QIAO Y, DAO T K, PAN J S, et al Diversity teams in soccer league competition algorithm for wireless sensor network deployment problem. Symmetry, 2020, 12 (3): 445.
doi: 10.3390/sym12030445 |
16 | FENG D J, LIU J, ZHAO F, et al. Electronic warfare and evaluation. Changsha: National University of Defense Technology Press, 2018. |
17 |
CID-LOPEZ A, HORNOS M J, CARRASCO R A, et al Linguistic multi-criteria decision-making model with output variable expressive richness. Expert Systems with Applications, 2017, 83, 350- 362.
doi: 10.1016/j.eswa.2017.04.049 |
18 | YAO J, HUANG Q W, WANG W P. Adaptive human behavior modeling for air combat simulation. Proc. of the IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications, 2015: 100 − 103. |
19 |
JIAO S, LI W E I, MA P, et al The simulation evaluation system for weapon operational effectiveness based on knowledge management. International Journal of Modeling, Simulation, and Scientific Computing, 2013, 4 (4): 1350020.
doi: 10.1142/S1793962313500207 |
20 | IBANEZ J S, GARRATON M C, MECA A S A literature review of DEA efficiency methodology in defence sector. Academia Revista Latinoamericana de Administración, 2020, 33 (3): 381- 403. |
21 |
COOK W D, SEIFORD L M Data envelopment analysis (DEA)–thirty years on. European Journal of Operational Research, 2009, 192 (1): 1- 17.
doi: 10.1016/j.ejor.2008.01.032 |
22 | TAVANA M, IZADIKHAH M, DI C D, et al A new dynamic range directional measure for two-stage data envelopment analysis models with negative data. Computers & Industrial Engineering, 2018, 115, 427- 448. |
23 | NADERI S, DAROUDI S, BATOUYI S Providing a new three stage data envelopment analysis model (DEA) in fuzzy environment. Journal of Data Envelopment Analysis and Decision Science, 2018, 2018 (2): 16- 29. |
24 |
SALEHI V, VEITCH B, MUSHARRAF M Measuring and improving adaptive capacity in resilient systems by means of an integrated DEA-machine learning approach. Applied Ergonomics, 2020, 82, 102975.
doi: 10.1016/j.apergo.2019.102975 |
25 |
KWON H B, MARVEL J H, ROH J J Three-stage performance modeling using DEA–BPNN for better practice benchmarking. Expert Systems with Applications, 2017, 71 (4): 429- 441.
doi: 10.1016/j.eswa.2016.11.009 |
26 | MIRZAEI M R, AFSHAR KAZEMI M A, TOLOIE ESHLAGHY A An efficiency measurement and benchmarking model based on tobit regression, GANN-DEA and PSOGA. International Journal of Finance & Managerial Accounting, 2019, 3 (12): 79- 93. |
27 |
HUANG C, DAI C, GUO M A hybrid approach using two-level DEA for financial failure prediction and integrated SE-DEA and GCA for indicators selection. Applied Mathematics and Computation, 2015, 251, 431- 441.
doi: 10.1016/j.amc.2014.11.077 |
28 | WANG L X, WANG A Q, HUANG Z X Parameter inversion of rough surface optimization based on multiple algorithms for SVM. Chinese Journal of Computational Physics, 2019, 36 (5): 577- 585. |
29 | LI H J, LU Q P. K-CV parameter optimization method in the application of SVM classification data. Proc. of the IEEE 2nd International Conference on Big Data Analysis, 2017: 25 − 29. |
30 | VISHWANATHAN S V M, MURTY M N. SSVM: a simple SVM algorithm. Proc. of the IEEE International Joint Conference on Neural Networks, 2002, 3: 2393 − 2398. |
31 |
SHALEV-SHWARTZ S, SINGER Y, SREBRO N, et al Pegasos: primal estimated sub-gradient solver for SVM. Mathematical Programming, 2011, 127 (1): 3- 30.
doi: 10.1007/s10107-010-0420-4 |
32 |
SEIFORD L M, ZHU J Sensitivity analysis of DEA models for simultaneous changes in all the data. Journal of the Operational Research Society, 1998, 49 (10): 1060- 1071.
doi: 10.1057/palgrave.jors.2600620 |
33 |
MOZAFFARI M R, GERAMI J, JABLONSKY J Relationship between DEA models without explicit inputs and DEA-R models. Central European Journal of Operations Research, 2014, 22 (1): 1- 12.
doi: 10.1007/s10100-012-0273-4 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||