Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (3): 522-533.doi: 10.23919/JSEE.2022.000052
收稿日期:
2021-02-04
出版日期:
2022-06-18
发布日期:
2022-06-24
Liting SUN, Xiang WANG*(), Zhitao HUANG()
Received:
2021-02-04
Online:
2022-06-18
Published:
2022-06-24
Contact:
Xiang WANG
E-mail:christopherwx@163.com;huangzhitao@nudt.edu.cn
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 522-533.
Liting SUN, Xiang WANG, Zhitao HUANG. Unintentional modulation microstructure enlargement[J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 522-533.
"
| PE | ED | MI | ||||||||
X | Y0 | Y | X | Y0 | Y | X | Y0 | Y | |||
I=3 | 0.958 | 0.678 | 0.609 | 0.220 | 0.266 | 0.632 | 0.86 | 0.861 | 0.740 | ||
I=5 | 0.894 | 0.539 | 0.573 | 0.522 | 0.524 | 1.214 | 0.826 | 0.842 | 0.732 | ||
I=10 | 0.745 | 0.530 | 0.567 | 0.537 | 0.550 | 1.235 | 0.820 | 0.833 | 0.735 | ||
I=15 | 0.637 | 0.543 | 0.568 | 0.598 | 0.600 | 1.396 | 0.817 | 0.841 | 0.732 | ||
I=20 | 0.641 | 0.546 | 0.577 | 0.583 | 0.590 | 1.349 | 0.817 | 0.836 | 0.733 |
1 | XIE F Y, WEN H, WU J S, et al Data augmentation for radio frequency fingerprinting via pseudo-random integration. IEEE Trans. on Emerging Topics in Computational Intelligence, 2020, 4 (3): 276- 286. |
2 | BECKER J K, GVOZDENOVIC S, XIN L X, et al Testing and fingerprinting the physical layer of wireless cards with software-defined radios. Computer Communications, 2020, 160 (4): 186- 196. |
3 | DOBRE O A Signal identification for emerging intelligent radios: classical problems and new challenges. IEEE Instrumentation & Measurement Magazine, 2015, 18 (2): 11- 18. |
4 | WANG W H, SUN Z, PIAO S, et al Wireless physical-layer identification: modeling and validation. IEEE Trans. on Information Forensics and Security, 2016, 11 (9): 2091- 2106. |
5 | MERCHANT K, REVAY S, STANTCHEV G, et al Deep learning for RF device fingerprinting in cognitive communication networks. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 160- 167. |
6 | DAVASLIOGLU K, SOLTANI S, ERPEK T, et al DeepWiFi: cognitive WiFi with deep learning. IEEE Trans. on Mobile Computing, 2021, 20 (2): 429- 444. |
7 | LIN Y, JIA J C, WANG S, et al. Wireless device identification based on radio frequency fingerprint features. Proc. of the IEEE International Conference on Communications, 2020.DOI:10.1109/ICC40277.2020.9149226. |
8 | ZHOU Y P, WANG X, CHEN Y, et al. Specific emitter identification via bispectrum-radon transform and hybrid deep model. Mathematical Problems in Engineering, 2020, 2020: 7646527. |
9 | TALBOT K I, DULEY P R, HYATT M H. Specific emitter identification and verification. Technology Review Journal, 2003. https://www.researchgate.net/publication/228790296_Specific_emitter_identification_and_verification. |
10 | RU X H, LIU Z, HUANG Z T, et al. Recognition performance analysis of instantaneous phase and its transformed features for radar emitter identification. IET Radar, Sonar & Navigation, 2016, 10(5): 945−952. |
11 | SUN L T, WANG X, YANG A F, et al. Radio frequency fingerprint extraction based on multi-dimension approximate entropy. IEEE Signal Processing Letters, 2020, 27: 471−475. |
12 | RU X H, LIU Z, HUANG Z T, et al. Evaluation of unintentional modulation for pulse compression signals based on spectrum asymmetry. IET Radar, Sonar & Navigation, 2017, 11(4): 656−663. |
13 | WILSON A J, REISING D R, LOVELESS T D. Integration of matched filtering within the RF-DNA fingerprinting process. Proc. of the Global Communications Conference, 2019. DOI:10.1109/GLOBECOM38437.2019.9014225. |
14 | SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios. IEEE Trans. on Information Forensics and Security, 2019, 14(3): 581−591. |
15 | ZHANG J W, WANG F G, DODRE O A, et al Specific emitter identification via Hilbert–Huang transform in single-hop and relaying scenarios. IEEE Trans. on Information Forensics and Security, 2016, 11 (6): 1192- 1205. |
16 | SEDDIGHI Z, AHMADZADEH M R, TABA5N M R Radar signals classification using energy-time-frequency distribution features. IET Radar, Sonar & Navigation, 2020, 14 (5): 707- 715. |
17 | BALAKRISHNAN S, GUPTA S, BHUYAN A, et al Physical layer identification based on spatial-temporal beam features for millimeter-wave wireless networks. IEEE Trans. on Information Forensics and Security, 2020, 15, 1831- 1845. |
18 | PENG L N, ZHANG J Q, LIU M, et al Deep learning based RF fingerprint identification using differential constellation trace figure. IEEE Trans. on Vehicular Technology, 2020, 69 (1): 1091- 1095. |
19 | LI L, JI H B Radar emitter recognition based on cyclostationary signatures and sequential iterative least-square estimation. Expert Systems with Applications, 2011, 38 (3): 2140- 2147. |
20 | ROY D, MUKHERJEE T, CHATTERJEE M, et al RFAL: adversarial learning for RF transmitter identification and classification. IEEE Trans. on Cognitive Communications and Networking, 2020, 6 (2): 783- 801. |
21 | SANKHE K, BELGIOVINE M, ZHOU F, et al No radio left behind: radio fingerprinting through deep learning osf physical-layer hardware impairments. IEEE Trans. on Cognitive Communications and Networking, 2020, 6 (1): 165- 178. |
22 | GOK G, ALP Y K, ARIKAN O A new method for specific emitter identification with results on real radar measurements. IEEE Trans. on Information Forensics and Security, 2020, 15, 3335- 3346. |
23 |
YE H, LIU Z, JIANG W L Comparison of unintentional frequency and phase modulation features for specific emitter identification. Electronics Letters, 2012, 48 (14): 875- 877.
doi: 10.1109/ICCC40277.2020.9149226 |
24 | CHEN P B, GUO Y L, LI G, et al Adversarial shared-private networks for specific emitter identification. Electronics Letters, 2019, 56 (1): 296- 299. |
25 | WU L W, NIU J P, WANG Z, et al Primary signal suppression based on synchrosqueezed wavelet transform. Journal of Electronics & Information Technology, 2019, 42 (8): 2045- 2052. |
26 | CHEN P B, GUO Y L, LI G Discriminative adversarial networks for specific emitter identification. Electronics Letters, 2020, 56 (9): 438- 441. |
27 | FENG Z P, ZHANG D, ZUO M J, et al Adaptive mode decomposition methods and their applications in signal analysis for machinery fault diagnosis: a review with examples. IEEE Access, 2017, 5, 24301- 24331. |
28 |
WU L W, ZHAO Y Q, FENG M F, et al Specific emitter identification using IMF-DNA with a joint feature selection algorithm. Electronics, 2019, 8 (9): 934.
doi: 10.3390/electronics8090934 |
29 | LIANG J H, HUANG Z T, YUAN Y J, et al A method based on empirical mode decomposition for identifying transmitter individuals. Journal of CAEIT, 2013, 8 (4): 393- 417. |
30 | KAY S M Fundamentals of statistical signal processing. Englewood: PTR Prentice Hall, 1993. |
31 | DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition. IEEE Trans. on Signal Processing, 2014, 62 (3): 531- 544. |
32 | ROY D, MAINAK T, CHATTERJEE M, et al RF transmitter fingerprinting exploiting spatio-temporal properties in raw signal data. Proc. of the IEEE 18th International Conference on Machine Learning and Applications, 2019. |
33 | SUN J X Modern pattern recognition. Beijing: Higher Education Press, 2008. |
34 | CHEN P B, XU K, LI K, et al. Local frechet distance in specific emitter identification. Proc. of the IEEE 9th International Conference on Communication Software and Networks, 2017. DOI:10.1109/ICCSN.2017.823023 |
35 | CHEN P B, XU K, LI K, et al. Local frechet distance in specific emitter identification. Proc. of the IEEE 9th International Conference on Communication Software and Networks, 2017.DOI:10.1109/ICCSN.2017.8230230. |
36 | LEONARDI M, FAUSTO D D. Secondary surveillance radar transponders classification by RF fingerprinting. Proc. of the 19th International Radar Symposium, 2018: 1−10. DOI:10.23919/IRS.2018.8448244. |
37 | CHEN S T, JIANG Q C, YAN X F Multimodal process monitoring based on transition-constrained Gaussian mixture model. Chinese Journal of Chemical Engineering, 2020, 28 (12): 3070- 3078. |
38 | YU J B, HU A Q, LI G Y, et al A multi-sampling convolutional neural network-based RF fingerprinting approach for low-power devices. Proc. of the IEEE INFOCOM Conference on Computer Communications Workshops, 2019, 1- 6. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||