1 |
BRANKO R, SANJEEV A, JAMES M Target motion analysis using range-only measurements: algorithms, performance and application to ISAR data. Signal Processing, 2002, 82 (2): 273- 296.
doi: 10.1016/S0165-1684(01)00187-6
|
2 |
ZHOU G J, ZHOU J F, FU T J, et al Multisensor-multitarget tracking based on hierarchical association only using range-Doppler measurements. Proc. of the IET International Radar Conference, 2013, 327- 340.
|
3 |
TOBIAS M, LANTERMAN A D A probability hypothesis density-based multitarget tracker using multiple bistatic range and velocity measurements. Proc. of the 36th Southeastern Symposium on System Theory, 2004, 205- 209.
|
4 |
JAUFFRET C, PEREZ A, PILLON D. Observability: range-only versus bearings-only target motion analysis when the observer maneuvers smoothly. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53(6): 2814–2832.
|
5 |
PILLON D, PEREZ-PIGNOL A, JAUFFRET C Observability: range-only vs. bearings-only target motion analysis for a leg-by-leg observers trajectory. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (4): 1667- 1678.
doi: 10.1109/TAES.2016.150016
|
6 |
SONG T L. Observability of target tracking with range-only measurements. IEEE Journal of Oceanic Engineering, 1999, 24(3): 383–387.
|
7 |
COLEMAN D, BOPARDIKAR S D, TAN X, Observability-aware target tracking with range only measurement. Proc. of the American Control Conference, 2021: 1–8.
|
8 |
CLARK J M, KOUNTOURIOTIS P A, VINTER R B. A Gaussian mixture filter for range-only tracking. IEEE Trans. on Automatic Control, 2011, 56(3): 602–613.
|
9 |
MANOLAKIS D E. Efficient solution and performance analysis of 3-D position estimation by trilateration. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32(4): 1239–1248.
|
10 |
DEMING R, SCHINDLER J, PERLOVSKY L. Multi-target/multi-sensor tracking using only range and Doppler measurements. IEEE Trans. on Aerospace and Electronic Systems, 2009, 45(2): 593–611.
|
11 |
MASHHADANI W A, DANOON L, BROWN A. Modeling range-only multistatic radar target detection with interval analysis in 3D. Proc. of the European Radar Conference, 2016: 173–176.
|
12 |
PETSIOS M N, ALIVIZATOS E G, UZUNOGLU N K. Manoeuvring target tracking using multiple bistatic range and range-rate measurements. Signal Processing, 2007, 87(4): 665–686.
|
13 |
YANG X S, ZHANG W A, LIU A D, et al. Linear fusion estimation for range-only target tracking with nonlinear transformation. IEEE Trans. on Industrial Informatics, 2020, 16(10): 6403–6412.
|
14 |
ZHAO Y S, HU D X, ZHAO Y J, et al. Moving target localization for multistatic passive radar using delay, Doppler and Doppler rate measurements. Journal of Systems Engineering and Electronics, 2020, 31(5): 939–949.
|
15 |
PACHOLSKA M, DUMBGEN F, SCHOLEFIELD A. Relax and recover: guaranteed range-only continuous localization. IEEE Robotics and Automation Letter, 2020, 5(2): 2248–2255.
|
16 |
SADEGHI M, BEHNIA F, AMIRI R. Optimal sensor placement for 2-D range-only target localization in constrained sensor geometry. IEEE Trans. on Signal Processing, 2020, 68: 2316–2327.
|
17 |
DASH D, JAYARAMAN V. A probabilistic model for sensor fusion using range-only measurements in multistatic radar. IEEE Sensors Letter, 2020, 4(6): 7500604.
|
18 |
MA H, ANTONIOU M, STOVE A G, et al. Target kinematic state estimation with passive multistatic radar. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57(4): 2121–2134.
|
19 |
BARRICK D. History, present status, and future directions of HF surface-wave radars in the U S. Proc. of the International Conference on Radar, 2003, 652- 655.
|
20 |
GRIFFITHS H. Multistatic, MIMO and networked radar: the future of radar sensors Proc. of the 7th European Radar Conference, 2010, 81- 84.
|
21 |
ZHOU G J, GUO Z K, LI K Y, et al. Motion modeling and state estimation in range-Doppler plane. Aerospace Science and Technology, 2021, 115: 106792.
|
22 |
LI K Y, GUO Z K, ZHOU G J. Nearly constant acceleration model for state estimation in the range-Doppler plane. IET Radar, Sonar & Navigation, 2021, 15(12): 1687–1701.
|
23 |
JULIER S J, UHLMANN J K, DURRANT-WHYTE H F. A new method for nonlinear transformation of means and covariances in filters and estimates. IEEE Trans. on Automatic Control, 2000, 45(3): 477–482.
|
24 |
JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401–422.
|
25 |
WAN E A, VAN D M R. The unscented Kalman filter for nonlinear estimation Proc. of IEEE Symposium on Adaptive Systems for Signal Processing, Communication and Control, 2000, 153- 158.
|
26 |
LIU C Y, SHUI P L, WEI G, et al Modified unscented Kalman filter using modified filter gain and variance scale factor for highly maneuvering target tracking. Journal of Systems Engineering and Electronics, 2014, 25 (3): 380- 385.
doi: 10.1109/JSEE.2014.00043
|
27 |
DENG F, CHEN J, CHEN C Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects. Journal of Systems Engineering and Electronics, 2013, 24 (4): 655- 665.
doi: 10.1109/JSEE.2013.00076
|
28 |
GUO Z K, ZHOU G J. State estimation from range-only measurements Proc. of the 23rd International Conference on Information Fusion, 2020, 367- 372.
|
29 |
ZHOU G J, PELLETIER M G, KIRUBARAJAN T, et al. Statically fused converted position and Doppler measurement Kalman filters. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50(1): 300–318.
|
30 |
ZHOU G J, WU L G, XIE J H, et al. Constant turn model for statically fused converted measurement Kalman filters. Signal Processing, 2015, 108: 400–411.
|
31 |
ARASARATNAM I, HAYKIN S. Cubature Kalman filter. IEEE Trans. on Automatic Control, 2009, 54(6): 1254–1269.
|
32 |
SHI J, QI G Q, LI Y Y, et al. Stochastic convergence analysis of cubature Kalman filter with intermittent observations. Journal of Systems Engineering and Electronics, 2018, 29(4): 823–833.
|
33 |
ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. on Signal Processing, 2002, 50(2): 174–188.
|
34 |
DAN C, DOUCET A. A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. on Signal Processing, 2002, 50(3): 736–746.
|
35 |
ZHANG Y, WANG S F, LI J C. Improved particle filtering techniques based on generalized interactive genetic algorithm. Journal of Systems Engineering and Electronics, 2016, 27(1): 242–250.
|
36 |
ZUO J Y, ZHONG X P. Particle filter for nonlinear systems with multi-sensor asynchronous random delays. Journal of Systems Engineering and Electronics, 2017, 28(6): 1064–1071.
|
37 |
TICHAVSKY P, MURAVCHIK C H, NEHORAI A. Posterior Cramer-Rao bounds for discrete-time nonlinear filter. IEEE Trans. on Signal Processing, 1998, 46(5): 1386–1396.
|
38 |
LI X R, JILKOV V P. Survey of maneuvering target tracking Part I: dynamic models. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (4): 1333- 1364.
doi: 10.1109/TAES.2003.1261132
|
39 |
BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with applications to tracking and navigation: theory, algorithms, and software. New York: Wiley, 2001.
|