Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (2): 474-488.doi: 10.23919/JSEE.2022.000047
收稿日期:
2020-11-26
接受日期:
2022-02-24
出版日期:
2022-05-06
发布日期:
2022-05-06
Jingfeng LI(), Yunxiang CHEN(), Zhongyi CAI*(), Zezhou WANG()
Received:
2020-11-26
Accepted:
2022-02-24
Online:
2022-05-06
Published:
2022-05-06
Contact:
Zhongyi CAI
E-mail:ljf653483717@163.com;653483717@qq.com;afeuczy@163.com;350276267@qq.com
About author:
Supported by:
. [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 474-488.
Jingfeng LI, Yunxiang CHEN, Zhongyi CAI, Zezhou WANG. A dynamic condition-based maintenance optimization model for mission-oriented system based on inverse Gaussian degradation process[J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 474-488.
"
Parameter | Initial value (0%) | ?80% | ?60% | ?40% | ?20% | +20% | +40% | +60% | +80% | |
Optimal expected cost ratio/(yuan·h?1) | 7.52 | 7.06 | 7.18 | 7.29 | 7.41 | 7.64 | 7.75 | 7.87 | 7.98 | |
6.55 | 6.80 | 7.04 | 7.28 | 7.76 | 8.01 | 8.25 | 8.49 | |||
2.93 | 4.08 | 5.23 | 6.37 | 8.67 | 9.82 | 10.96 | 12.11 | |||
3.51 | 6.44 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | |||
Difference from initial value/(yuan·h?1) | ? | ?0.46 | ?0.34 | ?0.23 | ?0.11 | 0.12 | 0.23 | 0.35 | 0.46 | |
?0.97 | ?0.72 | ?0.48 | ?0.24 | 0.24 | 0.49 | 0.73 | 0.97 | |||
?4.59 | ?3.44 | ?2.29 | ?1.15 | 1.15 | 2.30 | 3.44 | 4.59 | |||
?4.01 | ?1.08 | 0 | 0 | 0 | 0 | 0 | 0 | |||
SC /% | ? | 7.65 | 7.54 | 7.65 | 7.31 | 7.98 | 7.65 | 7.76 | 7.65 | |
16.12 | 15.96 | 15.96 | 15.96 | 15.96 | 16.29 | 16.18 | 16.12 | |||
76.30 | 76.24 | 76.13 | 76.46 | 76.46 | 76.46 | 76.24 | 76.30 | |||
66.66 | 23.94 | 0 | 0 | 0 | 0 | 0 | 0 |
"
Parameter | Initial value (0%) | ?80% | ?60% | ?40% | ?20% | +20% | +40% | +60% | +80% | +100% | +200% | +300% | +400% | +500% | +600% | +700% | +800% | +900% | |
Optimal expected cost ratio/(yuan·h?1) | ? | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.51 | 7.50 | 7.49 | 7.47 | 7.29 | 6.76 | 5.29 | 4.63 | 4.46 | 4.36 | 4.26 | 4.21 | |
7.52 | 7.49 | 7.50 | 7.51 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | 7.52 | ||
Difference from initial value/(yuan·h?1) | ? | 0 | 0 | 0 | 0 | 0 | ?0.01 | ?0.02 | ?0.03 | ?0.05 | ?0.23 | ?0.76 | ?2.23 | ?2.89 | ?3.06 | ?3.16 | ?3.26 | ?3.31 | |
? | ?0.03 | ?0.02 | ?0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
SC /% | ? | 0 | 0 | 0 | 0 | 0 | ?0.33 | ?0.44 | ?0. 50 | ?0. 66 | ?1.53 | ?3.37 | ?7.41 | ?7.69 | ?6.78 | ?6.00 | ?5.42 | ?4.89 | |
? | 0.50 | 0. 44 | 0. 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
c | ? | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 5.2 | 4.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | |
6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | ||
Difference from c | ? | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ?1.0 | ?1.7 | ?3.2 | ?3.7 | ?4.2 | ?4.7 | ?5.2 | |
? | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
SC/% | ? | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ?5.38 | ?6.86 | ?10.32 | ?9.95 | ?9.68 | ?9.48 | ?9.32 | |
? | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
"
Parameter | Initial value (0%) | ?4% | ?3% | ?2% | ?1% | +1% | +2% | +3% | +4% |
Optimal expected cost ratio/(yuan·h?1) | 7.52 | 10.21 | 10.21 | 10.21 | 7.83 | 7.37 | 7.18 | 6.91 | 6.75 |
Difference from initial value/(yuan·h?1) | ? | 2.69 | 2.69 | 2.69 | 0.31 | ?0.15 | ?0.34 | ?0.61 | ?0.77 |
SC /% | ? | ?849.57 | ?1132.76 | ?1699.14 | ?391.62 | ?189.49 | ?214.76 | ?256.87 | ?243.18 |
c | 6.2 | 9.5 | 9.5 | 9.5 | 7.5 | 5.5 | 4.5 | 3.0 | 2.0 |
Difference from c | ? | 3.3 | 3.3 | 3.3 | 1.3 | ?0.7 | ?1.7 | ?3.2 | ?4.2 |
SC /% | ? | ?1264.11 | ?1685.48 | ?2528.23 | ?1991.94 | ?1072.58 | ?1302.42 | ?1634.41 | ?1608.87 |
1 |
WINOKUR H S, GOLDSTEIN L J Analysis of mission-oriented systems. IEEE Trans. on Reliability, 1969, 18 (4): 144- 148.
doi: 10.1109/TR.1969.5216341 |
2 | LIU B, XIE M, XU Z G, et al An imperfect maintenance policy for mission-oriented systems subject to degradation and external shocks. Computers & Industrial Engineering, 2016, 102, 21- 32. |
3 |
ZHAO X, SUN J L, QIU Q A, et al Optimal inspection and mission abort policies for systems subject to degradation. European Journal of Operational Research, 2021, 292 (2): 610- 621.
doi: 10.1016/j.ejor.2020.11.015 |
4 | ZHAO X, FAN Y, QIU Q A, et al. Multi-criteria mission abort policy for systems subject to two-stage degradation process. European Journal of Operational Research, 2021, 295(1): 233–245. |
5 | QIU Q A, CUI L R Gamma process based optimal mission abort policy. Reliability Engineering & System Safety, 2019, 190, 106496. |
6 | QIU Q A, KOU M, CHEN K, et al Optimal stopping problems for mission oriented systems considering time redundancy. Reliability Engineering & System Safety, 2021, 205, 107226. |
7 | CHENG G Q, ZHOU B H, LI L Integrated production, quality control and condition-based maintenance for imperfect production systems. Reliability Engineering & System Safety, 2018, 175, 251- 264. |
8 |
ABDELHAKIM K, CLAVER D, EL-HOUSSAINE A, et al Integrated production quality and condition-based maintenance optimisation for a stochastically deteriorating manufacturing system. International Journal of Production Research, 2019, 57 (8): 2480- 2497.
doi: 10.1080/00207543.2018.1521021 |
9 |
WU Z Y, GUO B, AXITA, et al A dynamic condition-based maintenance model using inverse Gaussian process. IEEE Access, 2020, 8, 104- 117.
doi: 10.1109/ACCESS.2019.2958137 |
10 | GUO C M, WANG W B, GUO B, et al A maintenance optimization model for mission-oriented systems based on Wiener degradation. Reliability Engineering & System Safety, 2013, 111, 183- 194. |
11 | LI J F, CHEN Y X, XIANG H C, et al Remaining useful life prediction for aircraft engine based on LSTM-DBN. Systems Engineering and Electronics, 2020, 42 (7): 1637- 1644. |
12 |
WANG Z Z, CHEN Y X, CAI Z Y, et al Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold. Journal of Systems Engineering and Electronics, 2020, 31 (2): 415- 431.
doi: 10.23919/JSEE.2020.000018 |
13 | CAI Z Y, WANG Z Z, CHEN Y X, et al Remaining useful lifetime prediction for equipment based on nonlinear implicit degradation modeling. Journal of Systems Engineering and Electronics, 2020, 31 (1): 194- 205. |
14 | WANG Z Z, CHEN Y X, CAI Z Y, et al Remaining useful lifetime prediction based on nonlinear degradation processes with random failure threshold. Journal of National University of Defense Technology, 2020, 42 (2): 177- 185. |
15 | CAI Z Y, WANG Z Z, ZHANG X F, et al Online prediction method of remaining useful life for implicit nonlinear degradation equipment. Systems Engineering and Electronics, 2020, 42 (6): 1410- 1416. |
16 | WANG Z Z, CHEN Y X, CAI Z Y, et al Remaining useful lifetime online prediction based on accelerated degradation modeling with the proportion relationship. Systems Engineering and Electronics, 2021, 43 (2): 584- 592. |
17 | SHIN J H, JUN H B On condition based maintenance policy. Journal of Computational Design & Engineering, 2015, 2 (2): 119- 127. |
18 | ALASWAD S, XIANG Y S A review on condition-based maintenance optimization models for stochastically deteriorating system. Reliability Engineering & System Safety, 2017, 157, 54- 63. |
19 | CHEN Y X, WANG Z Z, CAI Z Y. Optimal maintenance decision based on remaining useful lifetime prediction for the equipment subject to imperfect maintenance. IEEE Access, 2020, 8: 6704–6716. |
20 |
CHEN N, YE Z S, XIANG Y S, et al Condition-based maintenance using the inverse Gaussian degradation model. European Journal of Operational Research, 2015, 243 (1): 190- 199.
doi: 10.1016/j.ejor.2014.11.029 |
21 |
YE Z S, CHEN N The inverse Gaussian process as a degradation model. Technometrics, 2014, 56 (3): 302- 311.
doi: 10.1080/00401706.2013.830074 |
22 | MA X Y, LIU B, YANG L, et al. Reliability analysis and condition-based maintenance optimization for a warm standby cooling system. Reliability Engineering & System Safety, 2020, 193: 106588. |
23 | WANG Z Z, CHEN Y X, CAI Z Y, et al Optimal replacement strategy considering equipment remaining useful lifetime prediction information under the influence of uncertain failure threshold. Journal of National University of Defense Technology, 2021, 43 (1): 145- 154. |
24 | PHUC D, VOISIN A, LEVRAT E, et al A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions. Reliability Engineering & System Safety, 2015, 133, 22- 32. |
25 | CABALLE N C, CASTRO I T, PEREZ C J, et al A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes. Reliability Engineering & System Safety, 2015, 134, 98- 109. |
26 | WASAN M T. On an inverse Gaussian process. Annals of Mathematical Statistics, 1967, 38(2): 638–645. |
27 |
WANG X, XU D H An inverse Gaussian process model for degradation data. Technometrics, 2010, 52 (2): 188- 197.
doi: 10.1198/TECH.2009.08197 |
28 | DONG W J, LIU S F, BAE S J, et al A multi-stage imperfect maintenance strategy for multi-state systems with variable user demands. Computers & Industrial Engineering, 2020, 145, 106508. |
29 | ZHOU Y, KOU G, XIAO H, et al Sequential imperfect preventive maintenance model with failure intensity reduction with an application to urban buses. Reliability Engineering & System Safety, 2020, 198, 106871. |
30 |
ZHANG M M, GAUDOIN O, XIE M Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance. European Journal of Operational Research, 2015, 245 (2): 531- 541.
doi: 10.1016/j.ejor.2015.02.050 |
31 | LIU G H, CHEN S K, JIN H, et al Optimum imperfect inspection and maintenance scheduling model considering delay time theory. Journal of Zhejiang University (Engineering Science), 2020, 54 (7): 1298- 1307. |
32 | PEI H, HU C H, SI X S, et al Remaining life prediction information-based maintenance decision model for equipment under imperfect maintenance. Acta Automatica Sinica, 2018, 44 (4): 719- 729. |
33 | CAI Z Y, CHEN Y X, LI S L, et al Residual lifetime prediction method with random degradation and information fusion. Journal of Shanghai Jiao Tong University, 2016, 50 (11): 1778- 1783. |
34 | CAI Z Y, CHEN Y X, GUO J S, et al Remaining lifetime prediction for device with measurement error and random effect. Systems Engineering and Electronics, 2019, 41 (7): 1658- 1664. |
35 | PAN D H, LIU J B, CAO J D. Remaining useful life estimation using an inverse Gaussian degradation model. Neurocomputing, 2016, 185: 64–72. |
36 |
SI X S, WANG W B, HU C H, et al Estimating remaining useful life with three-source variability in degradation modeling. IEEE Trans. on Reliability, 2014, 63 (1): 167- 190.
doi: 10.1109/TR.2014.2299151 |
37 | WANG Z Z, CHEN Y X, CAI Z Y, et al Real-time prediction of remaining useful lifetime for equipment with random failure threshold. Systems Engineering and Electronics, 2019, 41 (5): 1162- 1168. |
38 |
ELWANY A H, GEBRAEEL N Z, MAILLART L M Structured replacement policies for components with complex degradation processes and dedicated sensors. Operations Research, 2011, 59 (3): 684- 695.
doi: 10.1287/opre.1110.0912 |
39 |
LIAO H T, ELSAYED E A, CHAN L Y Maintenance of continuously monitored degrading systems. European Journal of Operational Research, 2006, 175 (2): 821- 835.
doi: 10.1016/j.ejor.2005.05.017 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||