1 |
CARES J R. An information age combat model. Proc. of the 9th International Command and Control Research and Technology Symposium on the Power of Information Age Concepts and Technologies, 2004.
|
2 |
LI J C, GE B F, ZHAO D L, et al Meta-path-based weapon-target recommendation in heterogeneous combat network. IEEE Systems Journal, 2019, 13 (4): 4433- 4441.
doi: 10.1109/JSYST.2018.2890090
|
3 |
WANG X H, ZHANG Y, WANG L Z, et al Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory. Chinese Journal of Aeronautics, 2020, 33 (1): 352- 364.
doi: 10.1016/j.cja.2019.04.025
|
4 |
SUN J B, GE B F, LI J C, et al Operation network modeling with degenerate causal strengths for missile defense systems. IEEE Systems Journal, 2016, 12 (1): 274- 284.
|
5 |
QIN M S, ZHAO D L, YANG K W Effectiveness evaluation of anti-submarine activities based on combat network. Systems Engineering and Electronics, 2018, 40 (7): 1513- 1520.
|
6 |
LICHTMAN M, VONDAL M T, CLANCY T C, et al Antifragile communications. IEEE Systems Journal, 2016, 12 (1): 659- 670.
|
7 |
FANG G X, TAN Y J, ZHANG M, et al Evaluation of relative contribution rate of missile weapon system-of-systems based on combat ring. Systems Engineering and Electronics, 2020, 42 (8): 1734- 1739.
|
8 |
CARES J R, DICKMANN J Q. Operations research for unmanned systems. Chichester: Wiley, 2016.
|
9 |
THOMAS A, TURNER T, SODERLUND S Net-centric adapter for legacy systems. IEEE Systems Journal, 2009, 3 (3): 336- 342.
doi: 10.1109/JSYST.2009.2025813
|
10 |
WANG Y M, CHEN S, PAN C S, et al Measure of invulnerability for command and control network based on mission link. Information Sciences, 2018, 426, 148- 159.
doi: 10.1016/j.ins.2017.10.035
|
11 |
LYV L Y, ZHOU T Link prediction in complex networks: a survey. Physica A: Statistical Mechanics and its Applications, 2011, 390 (6): 1150- 1170.
doi: 10.1016/j.physa.2010.11.027
|
12 |
LÜ L Y, PAN L M, ZHOU T, et al Toward link predictability of complex networks. Proceedings of the National Academy of Sciences, 2015, 112 (8): 2325- 2330.
doi: 10.1073/pnas.1424644112
|
13 |
AGHABOZORGI F, KHAYYAMBASHI M R A new similarity measure for link prediction based on local structures in social networks. Physica A: Statistical Mechanics and its Applications, 2018, 501, 12- 23.
doi: 10.1016/j.physa.2018.02.010
|
14 |
SHERKAT E, RAHGOZAR M, ASADPOUR M Structural link prediction based on ant colony approach in social networks. Physica A:Statistical Mechanics and its Applications, 2015, 419, 80- 94.
doi: 10.1016/j.physa.2014.10.011
|
15 |
GE B F, LI J C, ZHAO D L, et al Meta-path based link prediction approach for weapon system-of-systems combat networks. Systems Engineering and Electronics, 2019, 41 (5): 1028- 1033.
|
16 |
LIBEN-NOWELL D, KLEINBERG J The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 2007, 58 (7): 1019- 1031.
doi: 10.1002/asi.20591
|
17 |
AL HASAN M, CHAOJI V, SALEM S, et al. Link prediction using supervised learning. Proc. of the Workshop on Link Analysis, Counter-Terrorism and Security, 2006, 30: 798–805.
|
18 |
BACKSTROM L, LESKOVEC J. Supervised random walks: predicting and recommending links in social networks. Proc. of the 4th ACM International Conference on Web Search and Data Mining, 2011: 635–644.
|
19 |
WANG P, XU B W, WU Y R, et al Link prediction in social networks: the state-of-the-art. Science China: Information Sciences, 2015, 58 (1): 1- 38.
|
20 |
GETOOR L, DIEHL C P Link mining: a survey. ACM SIGKDD Explorations Newsletter, 2005, 7 (2): 3- 12.
doi: 10.1145/1117454.1117456
|
21 |
MENON A K, ELKAN C. Link prediction via matrix factorization. Proc. of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2011: 437-452.
|
22 |
VALLES-CATALA T, MASSUCCI F A, GUIMERA R, et al Multilayer stochastic block models reveal the multilayer structure of complex networks. Physical Review X, 2016, 6 (1): 011036.
doi: 10.1103/PhysRevX.6.011036
|
23 |
ZHANG J. Social network fusion and mining: a survey. arXiv preprint, arXiv: 1804.09874, 2018.
|
24 |
DEKKER A Applying social network analysis concepts to military C4ISR architectures. Connections, 2002, 24 (3): 93- 103.
|
25 |
DELLER S, RABADI G, TOLK A, et al Organizing for improved effectiveness in networked operations. Military Operations Research, 2012, 17 (1): 5- 16.
|
26 |
LEE Y, LEE T Network-based metric for measuring combat effectiveness. Defence Science Journal, 2014, 64 (2): 115- 122.
doi: 10.14429/dsj.64.5534
|
27 |
FAN C J, LIU Z, LU X, et al An efficient link prediction index for complex military organization. Physica A: Statistical Mechanics and its Applications, 2017, 469, 572- 587.
doi: 10.1016/j.physa.2016.11.097
|
28 |
SHI C, LI Y T, ZHANG J W, et al A survey of heterogeneous information network analysis. IEEE Trans. on Knowledge and Data Engineering, 2016, 29 (1): 17- 37.
|
29 |
QIU J Z, DONG Y X, MA H, et al. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. Proc. of the 11th ACM International Conference on Web Search and Data Mining, 2018: 459–467.
|
30 |
DONG Y X, CHAWLA N V, SWAMI A. metapath2vec: scalable representation learning for heterogeneous networks. Proc. of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 135–144.
|
31 |
GOYAL P, FERRARA E Graph embedding techniques, applications, and performance: a survey. Knowledge-Based Systems, 2018, 151, 78- 94.
doi: 10.1016/j.knosys.2018.03.022
|
32 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations. Proc. of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 701–710.
|
33 |
GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks. Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 855–864.
|
34 |
TANG J, QU M, WANG M Z, et al. Line: large-scale information network embedding. Proc. of the 24th International Conference on World Wide Web, 2015: 1067-1077.
|
35 |
CUI P, WANG X, PEI J, et al A survey on network embedding. IEEE Trans. on Knowledge and Data Engineering, 2018, 31 (5): 833- 852.
|
36 |
FU G J, YUAN B, DUAN Q Q, et al. Representation learning for heterogeneous information networks via embedding events. Proc. of the International Conference on Neural Information Processing, 2019: 327–339.
|
37 |
GOLDBERG Y, LEVY O. word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv preprint, arXiv: 1402.3722, 2014.
|
38 |
LECUN Y, BENGIO Y, HINTON G Deep learning. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539
|
39 |
AL HASAN M, ZAKI M J. A survey of link prediction in social networks. AGGARWAL C, ed. Social network data analytics. Boston:Springer 2011: 243–275.
|