Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (2): 330-339.doi: 10.23919/JSEE.2022.000034
收稿日期:
2021-03-01
出版日期:
2022-05-06
发布日期:
2022-05-06
Pengfei JI(), Qingzhan SHI*(), Huan LV(), Naichang YUAN()
Received:
2021-03-01
Online:
2022-05-06
Published:
2022-05-06
Contact:
Qingzhan SHI
E-mail:pfji@foxmail.com;qingzhanshi@foxmail.com;68107745@qq.com;yuannaichang@hotmail.com
About author:
. [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 330-339.
Pengfei JI, Qingzhan SHI, Huan LV, Naichang YUAN. A method of improving SFDRs of 1-bit signals for a monobit receiver[J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 330-339.
"
Variable | Specification |
fleft | The left border of the evaluated frequency band (evaluated value) |
fright | The right border of the evaluated frequency band (evaluated value) |
fs | The sampling rate (known value) |
f | The frequency of the fundamental component (variable value) |
f3rd | The frequency of the actual third harmonic component (variable value) |
"
SFDR/dB | Proportion under different SNRs | ||||||||||||||
Proposed way | Traditional way | ||||||||||||||
–5/dB | 0/dB | 5/dB | 10/dB | 15/dB | 20/dB | 30/dB | –5/dB | 0/dB | 5/dB | 10/dB | 15/dB | 20/dB | 30/dB | ||
≥10 | 84.4 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 100.0 | 100.0 | 100.0 | 88.5 | 38.6 | 24.5 | |
≥11 | 28.3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 99.9 | 100.0 | 100.0 | 28.2 | 1.9 | 1.0 | |
≥12 | 1.1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 58.0 | 100.0 | 100.0 | 1.0 | 1.0 | 1.0 | |
≥13 | 0 | 99.9 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 0 | 100.0 | 58.2 | 1.0 | 1.0 | 1.0 | |
≥14 | 0 | 99.9 | 100.0 | 100.0 | 98.2 | 96.7 | 95.9 | 0 | 0 | 100.0 | 12.5 | 1.0 | 0.9 | 0.8 | |
≥15 | 0 | 99.9 | 100.0 | 98.8 | 93.7 | 92.6 | 92.3 | 0 | 0 | 100.0 | 1.0 | 1.0 | 0.8 | 0.7 | |
≥16 | 0 | 92.6 | 100.0 | 94.4 | 91.9 | 91.9 | 90.0 | 0 | 0 | 96.3 | 1.0 | 1.0 | 0.7 | 0.7 | |
≥17 | 0 | 51.4 | 100.0 | 91.9 | 91.6 | 85.4 | 80.1 | 0 | 0 | 42.5 | 1.0 | 0.9 | 0.7 | 07 | |
≥18 | 0 | 8.2 | 99.9 | 91.9 | 84.8 | 73.5 | 71.3 | 0 | 0 | 0.1 | 0.9 | 0.8 | 0.7 | 0.6 | |
≥19 | 0 | 0.2 | 96.7 | 91.9 | 72.9 | 69.3 | 66.2 | 0 | 0 | 0 | 0.9 | 0.7 | 0.7 | 0.6 | |
≥20 | 0 | 0 | 91.9 | 90.4 | 70.3 | 62.9 | 59.8 | 0 | 0 | 0 | 0.8 | 0.7 | 0.7 | 0.6 | |
≥21 | 0 | 0 | 90.6 | 83.5 | 66.6 | 58.9 | 55.8 | 0 | 0 | 0 | 0.7 | 0.6 | 0.6 | 0.6 | |
≥22 | 0 | 0 | 70.8 | 73.0 | 60.6 | 56.1 | 50.3 | 0 | 0 | 0 | 0.3 | 0.6 | 0.6 | 0.6 |
"
Magnitude of the 2nd signal vs. the 1st signal | Channel I [2.223,6.667] GHz | Channel II [2.223,6.667] GHz | Channel III [2.223,6.667] GHz | Channel IV [2.223,6.667] GHz | |||||||
1st signal detection | 2nd signal detection | 1st signal detection | 2nd signal detection | 1st signal detection | 2nd signal detection | 1st signal detection | 2nd signal detection | ||||
0 dB | 100.0000 | 100.0000 | 99.9999 | 99.9951 | 100.0000 | 99.9961 | 100.0000 | 99.9999 | |||
?1 dB | 100.0000 | 99.9999 | 100.0000 | 99.9863 | 100.0000 | 99.9845 | 100.0000 | 99.9998 | |||
?2 dB | 100.0000 | 99.9996 | 100.0000 | 99.9242 | 99.9999 | 99.9138 | 100.0000 | 99.9996 | |||
?3 dB | 99.9998 | 99.9978 | 100.0000 | 99.7958 | 100.0000 | 99.7878 | 100.0000 | 99.9989 | |||
?4 dB | 100.0000 | 99.9877 | 100.0000 | 99.6609 | 99.9999 | 99.6236 | 100.0000 | 99.9889 | |||
?5 dB | 100.0000 | 99.8867 | 99.9999 | 99.4307 | 100.0000 | 99.4196 | 100.0000 | 99.8969 | |||
?6 dB | 100.0000 | 99.3148 | 100.0000 | 98.7302 | 100.0000 | 98.7005 | 99.9999 | 99.3400 | |||
?7 dB | 100.0000 | 98.0855 | 100.0000 | 97.3252 | 100.0000 | 97.2937 | 100.0000 | 98.0992 | |||
?8 dB | 100.0000 | 96.3991 | 100.0000 | 95.4919 | 100.0000 | 95.4762 | 100.0000 | 96.4031 | |||
?9 dB | 100.0000 | 94.5861 | 99.9999 | 93.5147 | 100.0000 | 93.4423 | 100.0000 | 94.6075 | |||
?10 dB | 100.0000 | 92.7778 | 100.0000 | 91.4837 | 100.0000 | 91.3897 | 100.0000 | 92.7628 | |||
?11 dB | 100.0000 | 90.9595 | 100.0000 | 88.6743 | 100.0000 | 88.6289 | 100.0000 | 91.0153 | |||
?12 dB | 99.9999 | 89.1601 | 100.0000 | 83.4579 | 100.0000 | 83.3371 | 100.0000 | 89.1434 | |||
?13 dB | 100.0000 | 87.0479 | 100.0000 | 76.8947 | 100.0000 | 76.7676 | 100.0000 | 87.0563 | |||
?14 dB | 100.0000 | 83.5611 | 100.0000 | 71.3506 | 100.0000 | 71.3038 | 100.0000 | 83.6230 | |||
?15 dB | 100.0000 | 77.1919 | 100.0000 | 65.3075 | 100.0000 | 65.2534 | 100.0000 | 76.9852 | |||
?16 dB | 99.9999 | 67.1489 | 99.9998 | 57.2727 | 100.0000 | 57.5192 | 100.0000 | 66.9188 | |||
?17 dB | 100.0000 | 54.1867 | 100.0000 | 46.8185 | 100.0000 | 47.1026 | 100.0000 | 53.8015 | |||
?18 dB | 100.0000 | 39.5937 | 100.0000 | 34.3705 | 100.0000 | 34.7538 | 100.0000 | 39.1649 |
1 | TSUI J B Y. Digital techniques for wideband receiver. 2nd ed. Norwood: Artech House, 2001. |
2 |
GRAJAL J, BLAZQUEZ R, LOPEZ G, et al Analysis and characterization of a monobit receiver for electronic warfare, IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (1): 244- 258.
doi: 10.1109/TAES.2003.1188907 |
3 |
HOST-MADSEN A, HANDEL P Effects of sampling and quantization on single-tone frequency estimation. IEEE Trans. on Signal Processing, 2000, 48 (3): 650- 662.
doi: 10.1109/78.824661 |
4 |
HOYOS S, SADLER B M, ARCE G R Monobit digital receivers for ultrawideband communications. IEEE Trans. on Wireless Communications, 2005, 4 (4): 1337- 1344.
doi: 10.1109/TWC.2005.850270 |
5 | RENEAU J, ADHAMI R R Differential phase measurement accuracy of a monobit receiver. IEEE Access, 2018, 6 (1): 69672- 69681. |
6 | TSUI J B Y. Two signal monobit electronic warfare receiver. U.S: Patent US75827596A, 1996. |
7 | HUGGETT M J, BASSETTT S K, TARDI J A. Monobit based low cost high performance radar warning receiver. U.S: Patent US12811107, 2009. |
8 | TSUI J B Y, SCHAMUS J J, KANESHIRO D H. Monobit receiver. Proc. of the IEEE MTT-S International Microwave Symposium Digest, 1997: 469–471. |
9 |
POK D, CHEN C I H, SCHAMUS J J, et al Chip design for monobit receiver. IEEE Trans. on Microwave Theory and Techniques, 1997, 45 (12): 2283- 2295.
doi: 10.1109/22.643832 |
10 | POK D, CHEN C I H, MONTGOMERY C, et al. ASIC design for monobit receiver. Proc. of the 10th Annual IEEE International ASIC Conference and Exhibit, 1997: 142–146. |
11 |
CHEN C I H, GEORGE K, MCCORMICK W, et al Design and performance evaluation of a 2.5-GSPS digital receiver. IEEE Trans. on Instrument and Measurement, 2005, 54 (3): 1089- 1099.
doi: 10.1109/TIM.2005.847206 |
12 | WANG L, ZHONG X M, ZHANG X, et al. Direction estimation algorithm for wideband monobit receiver. Proc. of the Industrial Electronics and Applications, 2009: 3914–3919. |
13 |
YIN H R, ZHANG D, KE L, et al Monobit digital receivers: design, performance, and application to impulse radio. IEEE Trans. on Communications, 2010, 58 (6): 1695- 1704.
doi: 10.1109/TCOMM.2010.06.080446 |
14 | ZHANG J Z, GUO X L, GAO X, et al. Multi-target frequencies and directions estimation algorithm for monobit digital wideband array receiver. Proc. of the IET International Radar Conference, 2013. DOI: 10.1049/cp.2013.0371. |
15 |
KHANI H, NIE H, XIANG W D, et al Polarity-invariant square law technology for monobit impulse radio ultra wideband receivers. IEEE Trans. on Vehicular Technology, 2014, 63 (1): 458- 464.
doi: 10.1109/TVT.2013.2271955 |
16 | REGEV Y N, WULICH D. On direction of arrival estimation with 1-bit quantizer. Proc. of the IEEE Radar Conference, 2019. DOI: 10.1109/RADAR.2019.8835785. |
17 | YANG Y M, XIANG H S Design and simulation of a monobit frequency measurement receiver. Shipboard Electronic Countermeasure, 2020, 43 (3): 119- 122. |
18 |
YUE G R, WANG Z Y, YIN H R Performance of monobit digital receivers with inter-symbol interference. IEEE Wireless Communications Letters, 2014, 3 (1): 66- 69.
doi: 10.1109/WCL.2013.111713.130723 |
19 |
SHARMA S, BHATIA V, DEKA K, et al Sparsity-cased monobit UWB receiver under impulse noise environments. IEEE Wireless Communications Letters, 2019, 8 (3): 849- 852.
doi: 10.1109/LWC.2019.2896998 |
20 |
KHANI H, NIE H Near-optimal detection of monobit digitized UWB signals in the presence of noise and strong intersymbol interference. IEEE Systems Journal, 2020, 14 (2): 2311- 2322.
doi: 10.1109/JSYST.2019.2925930 |
21 | BAZREFKAN A, ZLATANOV N Asymptotic capacity of massive MIMO with 1-bit ADCs and 1-bit DACs at the receiver and at the transmitter. IEEE Access, 2020, 8 (1): 152837- 152850. |
22 |
GEOGE K, CHEN C I H, TSUI J B Y Extension of two-signal spurious-free dynamic range of wideband digital receivers using kaiser window and compensation method. IEEE Trans. on Microwave Theory and Techniques, 2007, 55 (4): 788- 794.
doi: 10.1109/TMTT.2007.892818 |
23 |
LEE Y H G, CHEN C I H Dynamic kernel function fast Fourier transform with variable truncation scheme for wideband coarse frequency detection. IEEE Trans. on Instrumentation and Measurement, 2009, 58 (5): 1555- 1562.
doi: 10.1109/TIM.2009.2012962 |
24 | LEE Y H G, CHEN C I H Fixed-point fixed-precision dynamic kernel function FFT processor for wideband signal detection. Proc. of the IEEE Instrumentation & Measurement Technology Conference, 2010, 397- 401. |
25 | ZHANG W X, HE J X, GAO L P, et al Performance analysis of improved dynamic kernel function in fast Fourier transform. Proc. of the IEEE 14th International Conference on Electronic Measurement & Instruments, 2019, 30- 37. |
26 | JI P F, SHI Q Z, YUAN N C. Dynamic twiddle factors split-radix fast fourier transform for monobit receivers. Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2020. DOI: 10.1109/ICSPCC50002.2020.9259458. |
27 | YU M Y, DONG S B. An improved harmonic suppression method based on adaptive compensation algorithm for monobit receiver. Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. DOI: 10.1109/ICSIDP47821.2019.9172939. |
28 | GOMEZ-GARCIA R, BURGOS-GARCIA M Optimization of a monobit FFT radar interceiver using a genetic algorithm. Proc. of the IEEE Radar Conference, 2004, 503- 507. |
29 | PRITSKER D, CHEUNG C, NASH G Digital integrated monobit dithering in FPGA. Proc. of the IEEE National Aerospace and Electronics Conference, 2019, 416- 419. |
30 |
SURESH B N S, WOLLMAN H B Testing an ADC linearized with pseudorandom dither. IEEE Trans. on Instrumentation and Measurement, 1998, 47 (4): 839- 848.
doi: 10.1109/19.744631 |
31 | OPPENHEIM A V, WILLSKY A S. Signals and systems. 2nd ed. Englewood Cliffs: Prentice-Hall, 1997. |
32 |
YANG C, LIU F, WANG X, et al Investigation of on-chip soft-ferrite-integrated inductors for RF ICs—part I: design and simulation. IEEE Trans. on Electronic Devices, 2009, 56 (12): 3133- 3140.
doi: 10.1109/TED.2009.2033328 |
33 | CHEN Q, WANG C K, ZHANG F L, et al 3D heterogeneous integration enabling future RF ICs. Proc. on the IEEE Radio and Wireless Symposium, 2018, 188- 190. |
34 | LI C, ZHANG F L, DI M F, et al. Developing 3D heterogeneous structures for future chips. Proc. of the IC Design and Technology, 2019. DOI: 10.1109/ICICDT.2019.8790942. |
35 |
LIU B Y, WANG Q P, WU W W, et al A transceiver frequency conversion module based on 3D micropackaging technology. Journal of Systems Engineering and Electronics, 2020, 31 (5): 899- 907.
doi: 10.23919/JSEE.2020.000059 |
36 |
LI C, DI M F, PAN Z J, et al Enabling 3D heterogeneous structures towards smart chips: a review. Advances in science, Technology and Engineering Systems Journal, 2020, 5 (1): 267- 273.
doi: 10.25046/aj050134 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||